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ABSTRACT 
________________________________________________________________________ 

 

Robots carrying tasks in an unknown environment often need to build a map in order to 

be able to navigate. One approach is to create a detailed map of the environment 

containing the position of obstacles. But this option can use a large amount of memory 

especially if the environment is large. Another approach, closer to how people build a 

mental map, is the topological map.  A topological map contains only places that are 

easy to recognize (landmarks) and links them together. 

In this thesis, we explore the issue of creating a topological map from range data. A 

robot in a simulated environment uses the distance from objects around it (range data) 

and a compass as inputs. From this information, the robot finds intersections, classifies 

them as landmarks using a neural network and creates a topological map of its 

environment. The neural network detecting landmarks is trained online on sample 

intersections. Although the robot evolves in a simulated environment, the ideas developed 

in this thesis could be applied to a real robot in an office space. 
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RÉSUMÉ 
________________________________________________________________________ 

 

Un  robot évoluant dans un environnement inconnu a souvent besoin de construire une 

carte pour pouvoir naviguer. Une approche est de crée une carte détailler de 

l’environnent avec la position des obstacles. Mais cette option peut utiliser beaucoup de 

mémoire surtout si le lieu à cartographier est spacieux. Une autre approche qui est 

similaire a comment l’humain construit une carte mental, est la carte topologique.  

Une carte topologique ne contient que les emplacements qui sont facilement 

reconnaissable (point de repère) et ces derniers sont connectés entre eux.  

Dans cette thèse, nous explorons le problème de la création de carte topologique à partir 

de données de portées. Un robot dans une simulation utilise la distance a laquelle les 

objets autour de lui se trouve (données de portées) et une boussole. A partir de ces 

informations, le robot détecte les intersections, les classifie comme étant des points de 

repère en utilisant un neural network et crée une carte topologique de son environnent. 

Le neural network détectant les points de repère est entraîné on-line sur des échantillons 

d’intersection. Bien que le robot évolue dans un environnent simulé, les idées 

développées dans cette thèse pourraient être appliqué à un vrai robot dans un bureau. 
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CHAPTER 1  
_______________________________________ 
 
                         Introduction 
 
Mapping an unknown environment is a popular subject in robotics and artificial 

intelligence since it is often the first requirement for an autonomous mobile robot.  

In order for a robot to build a map, it must translate input information, which can be 

images from cameras, distances to surrounding obstacles or data from other sensory 

devices, into an abstract representation of the environment. This translation can be 

troublesome since input information is often noisy and inconsistent. A robot is frequently 

used in areas that a human cannot reach like a sewer or a distant planet.  Human 

intervention in case of a problem is usually impossible. The map created by the robot 

must therefore be robust, predictable and reliable. 

 

Mapping the environment is crucial. A robot’s task could be to gather information, to 

carry objects from an origin to a destination, or to perform other tasks in the same manner 

as a human. For many of these tasks, the robot must have a map of the known area in 

order to navigate and it must be able to expand the map as needed when discovering 

uncharted areas. Without a map, an autonomous robot cannot choose an itinerary to 

accomplish a task. 

 

Building a map is not a trivial problem. The robot must translate its first person view of 

the environment into an abstract top down view. Depending on the sensory device used, it 

can detect the relative position of obstacles through a sonar or a laser range finder, it can 

find obstacles by touching through a tactile sensor or identify obstacle from images 

received from a camera at regular time intervals. But all this data is relative to the robot’s 

current position and must be processed to create a map. The main problem encountered is 

the noise in inputs due to the limited precision of the hardware used. A sonar for instance 

cannot perceive an obstacle that is too close, and it has a limited range of action.  
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Translating the data from the input devices into a map is the second problem encountered 

especially when no global positioning device is used. A robot may have problems 

tracking efficiently its position due to imprecision in odometry. On any surface a robot 

will drift and slip which results in inaccurate estimates of distance traveled. Cameras 

present another problem, the detection of separate objects in an image and the estimation 

of distances to that object is troublesome. Different techniques for distance estimation 

exist but they require a lot of information about the lightning condition and the 

environment.  

 

There exist two main approaches to mapping an environment in robotics. Metric maps are 

a spatial representation of the environment describing the distances between objects. 

They are easy to build from range data but can be difficult to use for navigation. 

Topological maps on the other hand are a more abstract representation in which 

distinctive places are connected. Those connections represent existing paths from one 

place to the next. They can be built from an existing metric map or on the fly by detecting 

the distinctive places as the robot discovers the environment. 

 

This thesis shows how a robot can autonomously create a topological map of an indoor 

environment using range data and compass as inputs. A formerly trained neural network 

is used for landmark detection. We chose to use a neural network because it can be 

trained online to recognize different sensory situations as landmarks. Also, neural 

networks are known for their robustness to noisy data. We are building a topological map 

since the latter require less memory than a metric map and is easily used for navigation. 

Navigation on a metric map requires complex image processing algorithms in order to 

extract an obstacle free path. Since the topological map is already an abstract version of 

the environment, navigation only requires following the linked distinctive places using a 

shortest path algorithm. The creation of the topological map on the other hand is more 

complex than that of a metric map. We developed a simulation in order to test our 

concept. All results are gathered from the simulation. This work is a proof of concept.  

 

The thesis is organized as follows. In the second chapter, we will look at the background 

of map creation in robotics, the hardware requirements and limitation and different 
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approaches solving this problem. The third chapter will go over the simulation we created 

in order to test the concept. The next three chapter review how we accomplished 

landmark detection, topological map creation and navigation of the robot. The seventh 

chapter shows the experimental results of the landmark detection, topological map 

creation and navigation under different conditions. Finally the last chapter presents 

conclusions and directions for future work. 
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CHAPTER 2   
_______________________________________ 
 
                         Background 
 

Mapping an unknown environment is a crucial task for most autonomous robots. It 

requires processing sensor and/or camera information in order to build a map, which is 

then used by the robot in order to localize itself. The map building algorithm must be 

flexible enough to compensate for hardware errors, such as sensor errors and position 

errors due to slippage. 

There have been many different approaches for building maps from sensor data over the 

past few years. Based on the types of maps being constructed, these can be classified as 

building metric maps [16], topological maps [7, 5, 14] or both types of maps [6, 8, 10]. A 

metric map represents the distances between obstacles. A topological map is an 

abstraction of the environment which connects distinctive places or landmarks. 

Connections between landmarks represent an obstacle-free path between two landmarks. 

In this chapter, we will look at sensor types and then review different approaches in 

landmark detection, map building and navigation. 

2.1.  Types of Sensors 

The two most common sensor devices used on mobile robots are cameras and range 

sensors. Cameras give more information about the environment, but it is much harder to 

extract information from images. In order to create a map of the environment, we must 

extract distances from the robot to the surrounding obstacles. With those distances, we 

can then reconstruct the map. If the robot uses only one camera, it is very hard to 

determine how far objects are. “Shape from shading” [1] is a standard technique for this 

problem, but it requires precise information about lighting conditions in order to work 

properly. If the robot uses two cameras positioned a few centimeters apart, it is easier to 

determine the distance to obstacles using stereovision techniques [1]. The two images 

captured at one point in time are similar but not identical due to the difference in position 
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of the two cameras. The robot needs to match each pixel of the image captured by the 

right camera to each pixel of the image taken by the left camera and then uses geometric 

properties to infer distances. Another difficulty related to cameras consists in finding 

objects. Even with depth information, discerning objects from background is a complex 

problem. So cameras can provide much information about the surrounding but 

deciphering this information is not a trivial task.  

 

Range data given by infrared, sonar or laser rangefinder sensors contains explicitly the 

distance to an obstacle. With multiple sensors, the robot can obtain the distance to all 

obstacles at the current location [2]. Range data provides less information, which 

facilitates parsing and interpretation, especially for the task of finding landmarks in an 

indoor environment. 

A comprehensive description of the different types of range sensors is given in the book 

“Computational Principles of Mobile Robotics” by G. Dudek and M. Jenkin. We 

summarize here the information relevant to this thesis. 

The infrared proximity detector, although subject to environment interference (sunlight), 

gives a fast and inexpensive solution to range data. The distance is estimated from the 

strength of the infrared signal sent out and received back after bouncing on an obstacle. 

Sonars, which have a long history in the underwater world, use sound to determine the 

distance to an obstacle. Distances are estimated using time of flight, phase and the 

attenuation of the reflected signal.  

A transducer using ultrasound, such as the Polariod SensComp 7000, has a range from 

0.15 meters to 10.7 meters with a resolution of ± 3 mm to 3 meters [23]. Sonar 

transducers are widely used in robotics because of low cost [3].  
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In the case of a sonar, the transducer sends a sonar “chirp” that will be reflected onto 

obstacles in front of the transducer. Ideally, the reflected “chirp” should be received by 

the sonar as a single clear sound at a later time. Knowing the speed at which the sound 

travels, one can compute the distance at 

which the obstacle is from the time it 

took for the “chirp” to travel to the 

obstacle and back.  

There are multiple problems inherent to 

the system that generate errors in the 

results. First, once the sonar emits a 

pulse, it goes through a transition phase 

during which it is unable to listen for the 

returning pulse [3]. If an obstacle is too 

close to the transducer, the reflected 

signal will return during this transition phase and will never be “heard” by the sonar. As 

we can see on Figure 1, when the wall is too close to the sonar, the line representing the 

estimated distance it very long because the sonar never “heard” the reflected signal. 

 

Secondly, “the sonar chirp is not an infinitely narrow beam” [3]. The off-axis sonar chirp 

can be a source of error in the reflected signal. Thirdly, the reflected signal heard by the 

transducer may have been reflected on multiple surfaces, hence it may not always 

represent a linear path between the robot and the obstacle. 

 

 

 
Figure 1 : Sonar Error Simulation in a Simple 

room [3] 
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Figure 2 : Low level sonar traces in with an ideal isolated obstacle [3] 

 

 

 
Figure 3 : Low level sonar traces in a realistic environment [3] 

 

Figures 2 and 3 taken from Dudek and Jenkin [3] show low level sonar traces after 

sending a pulse. We see on both figures the initial pulse on the left hand side of each 

figure. In Figure 3, the sonar pulse takes multiple paths and we get multiple reflected 

signals while in Figure 2 we see one large reflected signal which corresponds to one 

obstacle. 

 

Radars work the same way as sonars but use radio waves instead of sound waves. 

Laser rangefinders use one of three methods to find the distance of an obstacle: 

triangulation (geometric relationship between emitted light beam and reflected light 

beam), time of flight (time between emitted light beam and reflected light beam) or phase 

difference (difference between the phase of the emitted light beam and the reflected 

light).  
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Laser rangefinders can be found in a wide variety of ranges; some have a 2 – 600 meters 

range with ± 15.3 cm accuracy [22], others have been used to compute the distance from 

the earth to the moon [24]. Laserrange finders are more accurate, but since they are more 

expensive and present health hazard to the eyes, they are less commonly used on robots.  

Lasers have a wide variety of range capability depending on what technique is used. 

A laser using time of flight can measure from a few meters up to tens of kilometers with 

an accuracy of 1 mm [24]. The time of flight method is very similar to the one discussed 

for sonars. The distance is estimated using the time it took the light to travel to the 

obstacle and back. Knowing the speed of light, the distance traveled by the light can be 

computed very accurately. Unlike sonars, lasers do not have the problem that the signal 

may take multiple paths. In fact, it is possible to have dense environment range data. [18]. 

One can get an accurate distance to obstacles for every pixel of a digital picture. 

 

In order to measure distances in different directions with only one laser, one can use a 

scanning mirror [18]. Moving a mirror instead of the entire laser is faster, demands less 

energy and does not affect the result. 

 

 

 

Figure 4: Laser Range Finder Device position with mirror 
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In Figure 4, the laser is pointing toward the ceiling and a mirror placed at a 45 degree 

angle reflects the laser horizontally. By rotating the mirror around the y axis, one can 

obtain range data all around the robot using only one laser rangefinder device. 

2.2. Landmark Detection  

The term “landmark” does not have an official definition, but everyone seems to agree 

that it is a “reference point” that helps a robot recognize its current location [7]. While 

some researchers have used artificial landmarks such as ultrasonic beacons, reflective 

tape or visual patterns to help robot localize itself [19, 20], others have tried to use natural 

landmarks such as intersections [14], signs meant for people [15] or let the robot choose 

its own natural landmarks [7]. This latter type of landmark is what we are using in this 

thesis. 
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Kuipers & Byun use the 

distinctiveness of the surrounding 

to find their landmarks (called 

Distinctive Places [14]). Their 

distinctive places are closely 

related to the topological map the 

robot is creating since each node 

in the topological map 

corresponds to an intersection. 

Each place has to be locally 

distinctive within its immediate 

neighborhood.  When considering 

a two dimensional map of a local 

neighborhood (Figure 5 a), “the 

most distinctive points occur 

where the lines intersect, near the 

center” [14]. Those lines are 

defined by the geometric feature 

Equal-Distances-to-Near-Object 

(Figure 5 b). Once the robot 

recognizes that it is in the 

neighborhood of a distinctive 

place, a hill-climbing strategy is 

used to find the closest distinctive place as shown in Figure 5 c. When traveling from one 

distinctive place to the next, the robot uses a similar geometric feature. It follows the 

midline of a corridor. When the robot enters a larger room, it follows the wall. The hill-

climbing search for distinctive place on continuous sensory feedback is a robust 

algorithm even with sensory and movement errors. 

  

Rizzi, Maio and Golfarelli use a set of landmark templates and match them to real-time 

inputs as the robot evolves in an environment. Every sonar pattern is stored in a high 

resolution occupancy grid. But because the matching algorithm has prohibitive 

 
Figure 5 : Distinctive Places [Kuyper and Byun] 



 

20 

computational costs[11], they introduce a second, low resolution grid which is a 

“weighted average of the occupancy previsions for all the corresponding cells in the first 

occupancy grid” [11]. When a region of interest in found on the low resolution 

occupancy grid, the matching template algorithm is performed on the high resolution 

occupancy grid but only in the region of interest. The actual matching is done by 

“comparing the occupancy prevision gradients for each pair of corresponding cells” [11].  

 

Sim and Dudek explore another aspect of landmark detection [32]. They present a 

method that addresses the problem of learning a set of models of visual features that are 

not affected by scale or translation. This approach can be used for initial localization, 

position tracking or other visualization tasks. The learning process is divided in four 

parts: Feature Extraction, Feature Tracking, Generative Feature Model and Model 

Evaluation. Potential features are first extracted from training images using the SIFT 

feature detector [33]. The area around every point detected by SIFT feature detector is 

presumed important. From the initial training image, nearby training images are inserted 

while the algorithm tries to track the feature detected initially. In the generative feature 

model stage, the robot must learn the features from images taken from known camera 

positions.  

The observation of a feature is defined as 









=

u

s
z  

where s represents the scale of the feature and u represents the position of the feature in 

the image. The observation z is a vector-valued function of the pose of the camera. In 

order to learn this function, the robot models each element of z as a linear combination of 

radial basis functions (RBF).  

∑=
n

i

iiGwz  

where n is the number of training poses, w are weights and G is an exponentially 

decaying RBF. Optimal weights are computed as the solution to the linear least squares 

problem. Finally the quality of models is evaluated using leave one out cross validation. 
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Data from sensors needs to be interpreted in order to detect landmarks. Landmark 

detection can be seen as a binary classification problem. Such a problem can be 

approached in many different ways. There exist many different classification algorithms 

such as decision trees, support vector machines or neural networks to name just a few 

options.  

Any classification algorithm could potentially work in our problem. We chose neural 

networks because they can naturally be trained online (which is not the case for other 

classification algorithms).  Also neural networks are known to work well with noisy or 

occluded data. An example in chapter 7 of the Neural Network Design textbook [4] 

shows how well a neural network is able to recover patterns of which 50% have been 

occluded.  

2.3. Neural Networks for Landmark detection 

A neural network is a collection of simple computational units called neurons, which are 

organized in layers. There is an input layer, one or more hidden layers, and an output 

layer. Each layer can have multiple neurons. In the feed-forward architecture, the output 

of every neuron of one layer is connected to the input of every neuron of the next layer.  

 

The output signal of a neuron is the weighted sum of its inputs plugged into a transfer 

function [4]. The transfer function modifies the signal to emphasize whether the neuron is 

mostly on, or mostly off. 

 

So the output vector of the layer i which has n neurons would be computed as follows: 

 

( )iiiii baWfa +×= −1
 

 

where i is the layer number, W is an m by n matrix of weights, ai-1 is the vector of inputs 

of size m which are outputs from the previous layer (for all layers except the first), b is 

the vector of bias weights of size n and f the transfer function.  In other words, for every 

neuron, the output is obtained as a linear combination of its inputs, modified by a transfer 

function.  Typically, the transfer function for a backpropagation neural network is a 

Sigmoid: 
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Neural networks have already been used for landmark detection. S. Thrun used a neural 

network in order to have the robot detect self-selected landmarks [7].  In his approach, 

the robot has a camera that can tilt and pan (active perception) and a sonar. Both sonar 

readings and camera image are used for landmark detection.  The neural network is 

trained to minimize the approximate Bayesian localization error which we explain next. 

  

At any time, the robot has some belief about its location. It keeps a probability density 

over all locations l, )(
^

lP . As the robot moves or rotates, the certainty decreases since 

robot motion is subject to slippage and drift. The motion command a is described by a 

transition density, )|(
~

llPa . This is the probability that the robot is at location l  knowing 

that it was at location 
~

l after executing the command a. In order to make sure that the 

robot maintains a high certainty of its position, it queries its sensors at regular intervals to 

check if any landmarks can be observed. Obvioulsy, the probability to observe a 

landmark if depends on location l . )|( lfP i is the probability that if  is observed 

knowing that the robot is at location l . )(lP denotes the prior belief as to where the robot 

might be. 
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Each landmark found is used to improve the precision of the density function. Maximum 

likelihood or Bayes estimation can be used to specify a single location instead of a 

density function.  The density function is updated as follows: 

1. Initialization )()(
^

lPlP ←  

2. For each observed landmark vector f  do: 

 )()|()(
^^

lPlfPlP ⋅←  

 
1^^^

)()()(
−







← ∫ dllPlPlP

L
 (normalization) 

3. For each robot motion a do: 

 
~~^~^

|)( ldlPllPlP
L

a 







⋅







← ∫  

 

The algorithm needs to minimize the Bayesian a posteriori error E . But the true Bayesian 

localization error can not be computed because the probability )|( lfP i  is unknown.  

So the neural network landmark detector is trained so as to minimize an approximation of 

the error,
~

E , based on examples. The set of example is defined as { }slX ,= , where s is 

the sensor measurement and l is the location where the sensor measurement was taken.  

The samples are used to provide an approximation of )|( lfP i  and the approximated 

error is computed as: 

1

~^

,
1
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where  denotes a norm2 

The neural network is trained with gradient descent to minimize
~

E . The weights and 

biases µυiw are iteratively modified as follows: 
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µυ

µυµυ η
i

ii
w

E
ww

∂

∂
−=

~

 with η being the learning rate. 

 

This neural network is not trained with supervised learning; “no target values are 

generated” [7]. It is trained with gradient descent to directly minimize
~

E .  

The landmark detection “emerges as a side effect of minimizing E” [7]. 

 

Our approach is similar to Kuipers & Byun’s method, but instead of using a hill-climbing 

algorithm to detect landmarks, we are using a neural network. Unlike Thrun, we use a 

standard supervised learning setting, in which the neural network is trained with 

previously labeled data.  Although Kuipers & Byun’s algorithm is robust, we believe that 

a neural network is more flexible. The neural network can be trained to recognize any 

kind of sensor situation depending on the environment it will be mapping. Also, as 

mentioned earlier, neural networks work well with noisy data, and can potentially find 

intersections no matter how the robot approaches them. We are exploring how well a 

neural network is capable of matching a pre-learned set of templates to places in an 

unknown environment. 

 

2.4. Mapping  

Maps representing an environment can be classified in two groups: metric maps and 

topological maps. There has been a lot of work in robotics and artificial intelligence using 

either or both of these methods to map an unknown environment.  

 

The most common metric map, called grid map is a two dimensional array of values 

where each value represents the occupancy [7] corresponding to obstacles in the 

environment. It has been used in many robotics projects [7, 16, 26, 27, 28]. The robot 

creates an occupancy grid map of the location of walls and obstacles corresponding to the 

environment it is exploring. This kind of map will keep more information and therefore, 

it can use an excessively large amount of memory depending on the necessary resolution. 

Chalita and Laumond proposed different types of metric maps using sets of polyhedra 
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[17]. This alternative approach is still subject to the same size issue as other types of 

metric maps. 

 

A topological map only keeps key elements of the environment (landmarks) and their 

relative location to each other. It is usually represented as a graph. Landmarks are 

represented as vertices and the direct paths between them as arcs.  

Topological maps are much easier to use since they are at a higher level of abstraction. 

Finding a path from one point to another on the map only requires finding the shortest 

path between two nodes following the arcs. Different topological map representations can 

be found in many robotics projects [14, 8, 10, 5, 30]. 

 

People interested in robotics have mainly studied metric maps while people working in 

AI seem to be mainly interested in topological maps [9]. More recently, some have been 

interested in using both because each type of map has something to offer. Grid maps are 

easily built and facilitate computation of shortest paths while topological maps allow 

efficient planning, accurate positioning is not required and they are convenient to 

represent symbolic planner & language interface [8]. 
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 Building a metric map from sensors is fairly easy [8]. One approach is to build the 

topological map from the metric map. Once the metric map has been built, free space in 

the metric map is partitioned into a small number of regions. From the free space in the 

metric map, Thrun and Bücken draw the Vornoi diagram, find the critical points (points 

on the Vornoi diagram that 

minimize clearance locally 

[8] and deduce the critical 

line “obtained by connecting 

each critical point with its 

basis points” [8]. Each 

critical point must be part of 

the Vornoi diagram and the 

clearance of all points in an 

ε-neighborhood of each 

point in the free space is not 

smaller.  The lines partition 

the free space into regions 

[8]. Each region becomes a node of the topological map. If two regions are next to one 

another, this will correspond to a link connecting the two nodes representing the two 

regions. 

Figure 6 shows the different steps from the Vornoi diagram to the topological graph. 

Fabrizi and Saffioti have used a similar approach to build topological maps from metric 

maps. They use the watershed algorithm [13] to partition the free space into a set of 

connected regions [10]. 

 

Those two approaches create topological maps after creating the metric maps. Although 

the methods are interesting, they do not allow having the topological map created on the 

fly and therefore, the robot cannot take advantage of the topological map as it is 

discovering the environment. They also require more memory in the robot to store both 

types of maps. Even if the metric map is discarded after building the topological map, the 

robot needs to have enough memory to have both types of map in memory at the same 

time. 

 
Figure 6 : Extracting the topological graph [8] 
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Some other approaches successfully created topological maps without creating a metric 

map of the environment first. U. Zimmer experimented with a robot equipped with light 

sensor, tactile sensor and an odometer [5]. From those inputs only, the robot inserts nodes 

in an initially empty topological map using two growing strategies: spontaneous insertion 

[5] and statistical insertion[5]. The first strategy inserts a node when the distance between 

the previous node and the current estimated position exceeds a certain threshold. 

Statistical insertion adds nodes every time the classification error exceeds a threshold. 

Each inserted node is “classified” in the topological map and has a “classification error 

attached to it. 

 

 

Zimmer’s method creates the topological map on the fly, but the nodes of the topological 

map do not represent a strategic place, they are placed regularly to keep track of the 

current position for localization. In this thesis, we explore the use of landmarks as 

distinctive navigational place such as intersections, turns, or rooms. This approach is 

motivated by our personal observations on how humans seem to memorize paths from 

one place to another. We seem to remember important places where a decision has to be 

taken, as well as how long it takes to go from one important place to the next.  

 

Kuipers & Byun have 

developed a method for 

topological map creation by 

finding landmarks at 

intersections [14]. Their robot 

keeps metric information at 

landmarks and along the arcs 

leading from one landmark to 

the next. The robot can then 

recreate a metric map from the topological map. An illustration of this approach is 

presented in Figure 7. As we can see, the large room is not detected as a landmark, but as 

an intersection at each hallway. The landmarks only represent intersections and cannot 

 
Figure 7 : Exploration results with systematic and 10% 

random error [14] 
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represent a room. This approach does not allow choosing what a landmark should be. We 

believe that being able to mark a room as one unique node makes the topological map 

closer to how a human would conceptualize a map, it simplifies the topological map and 

makes it easier to use for navigation. In our approach, we are creating similar maps using 

a different, more flexible, landmark detection technique where we can decide to have a 

room as a landmark by adding a room to the neural network’s training set. 

 

2.5. Navigation & Position Tracking 

 

Building a map requires the robot to approximate its current location and have a strategy 

to explore the entire environment. Those two requirements are mandatory in order for a 

robot to create a map without human intervention. 

 

Localization “involves determining the position of the agent in the environment from a 

set of sensor readings”[31]. Position tracking, which is a type of localization, “refers to 

the problem of compensating slippage and drift while the robot is moving”[7]. 

A robot needs to know its current position and orientation on a map of the environment in 

order to navigate to a goal. There are two main methods used in robotics for localization. 

One uses a form of global positioning device such as Global Positioning System (GPS) or 

the new European system: Global Navigation Satellite System (GNSS) [21, 25]. 

Although global positioning simplifies greatly the task of positioning, it is not always a 

viable choice. GPS may not work in the environment in which the robot is evolving 

(underground, Mars, Moon). The other option often chosen in robotics [14, 8] is the 

odometer with a compass. Knowing how much the robot traveled and the direction in 

which it traveled lets the robot estimate the new position with respect to its previous 

position. But odometers are subject to errors due to drift and slippage so position tracking 

becomes crucial for this method to work well. 

 

The data gathered by a robot has a certain degree of uncertainty which in some cases can 

add up to return large errors. For instance, when the only method for estimating the 

robot’s current position is the distance traveled and orientation, errors due to slippage can 
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have a devastating effect. After 15 minutes of robot operation, the position error can 

attain 11 meters [8]. When this is the case while building a metric map, the resulting map 

looks distorted: wall positions and orientations are inaccurate.  

Thrun and Bucken integrated three source of information to resolve this problem: wheel 

encoder, map correlation and wall orientation. Wheel encoders, which measure the 

number of revolutions of the robot’s wheels, can be used to reduce the error. According 

to [8], odometery based on their measurements is very accurate over short time intervals.  

Every time the robot interprets a sensor reading, it creates a “local” map. Map correlation 

is used to compare the local map with the global map providing a second source of 

information on the robot’s position. Finally, checking the wall orientation solves the 

problem related to the rotational error. 

We address this issue by checking the position of the robot every time it passes through a 

known node of the topological map. We do not have to take rotational error into 

consideration since our robot has access to a compass at all time. This will be further 

explained in chapter 5. 

 

We separate the navigation in two level of abstraction. At a higher level, the robot needs 

to know where it goes on a map and what path it must take to reach its goal. At a lower 

level, the robot must follow the path decided by the higher level of abstraction while 

avoiding collision with obstacles.  

 

For the higher level of abstraction, P. Gaussier and S. Zrehen have studied an approach of 

navigation imitating the functioning of animals [12]. Using a neural network, they use 

information from the environment and needs such as hunger, pain and tiredness as input 

for a neural network trained using unsupervised learning.  The robot is able to make 

decisions based on current needs (e.g. hunger), memorized location (e. g. position of 

food), and current information (e.g danger or obstacle to be avoided). They use a simple 

neural network to accomplish robot navigation and goal management. This approach, 

although conceptually interesting, is too complex for the task we want to accomplish. 

 

Kuiper & Byun use an exploration agenda [14]. Their robot keeps a list of all places 

visited where an unexplored direction still exists. Each time the robot leaves a place 
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where there exists at least one more direction in addition to the one it is taking, it adds the 

place and the direction to the list. In order to delete direction from the list, the robot has 

to reach the place again and follow the unexplored path.  Our method for map building is 

similar, but instead of keeping an extra list of unexplored directions and places, we keep 

this information in the topological map at each node. The robot will recursively search 

the topological map until it finds the next closest unexplored direction. 
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CHAPTER 3  
_______________________________________ 
 
               Overview of the Simulation 
 

For the purpose of illustrating the use of neural networks for mapping, we will use a 

simulated environment in which the robot can gather data at will. We simulate navigation 

through building environments, and the sample maps we use are presented in the 

Appendix. 

 

The robot navigates either in manual or in automatic mode. When the robot is in manual 

mode, the user controls the robot. Range data and the position on the map are displayed 

on the screen. When the robot is in automatic mode, it tries to explore the environment 

without human intervention. The simulated robot handles the topological map building in 

both modes. The only knowledge of the environment is through its sensors which are: 

laser range finder, compass and odometer. From those inputs, the robot detects 

landmarks, updates the topological map each time a landmark is detected and controls its 

acceleration and turn when in automatic mode. The distance traveled by the robot 

depends on the time step chosen for the simulation. Note that the robot movement has its 

own parameters, and it does not depend on the computer performance. 

 

speedtdist ⋅∆=  

 

We simulated a basic laser range finder because laser range finders are more accurate and 

are simpler to simulate. We provide a couple of parameters in the simulation to set the 

maximum range limit and the number of directions that will be covered.  The maximum 

range limit simulates the fact that all range finders have a distance limit. Any obstacle 

that is further than that threshold will be seen as if it was at that threshold.  Since the 

range data will be sent to a neural network and neural networks work better with values 

between -1 and 1, the range data is then normalized between 1 and -1. So for every value 

in the range data array we have: 
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When rangedata[i] is larger than threshold 

Rangedata[i] = threshold 

1
][2

][ −






 ⋅
=

threshold

irangedata
iIn  

 

The threshold represents the maximum range limit.  Note that choosing a threshold that is 

too small would blind the robot because all obstacles would appear at equal distance. No 

actual obstacle would be reached by any sensor in any direction.  The threshold should be 

chosen realistically, based on the capabilities of actual sensors. 

 
Figure 8 : Small Range Data Limit 

 

Choosing a threshold that is too large introduces other problems.  Because the input is 

normalized; the largest value will always become 1 and the smallest -1. If the variation 

between the largest distance and smallest distance is important, all details in the range 

data will be smoothed out. Two similar T-intersections except one of them with a long 

hallway will generate very different input to the neural network because of that 

normalization.  If a large threshold is desired, a different way of encoding the inputs for 

the neural network may be necessary.  We do not explore this further in the thesis. 

 

Hallways in the maps we created are between 4 and 10 units wide and up to 128 units 

long. The width of a real hallway is about 2 meters. As mentioned earlier, some laser 

range finders can estimate distances up to 600 meters. We chose to simulate a laser range 

finder that has a limit of 25 meters, which means choosing a threshold of 50 units. This 
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threshold is a reasonable choice because it will catch the details of hallways without 

creating problems for the neural network input.  

 

The number of directions covered is set by the number of laser range finders we desire to 

use or by the number of direction that one laser range finder can cover. The number of 

input neurons of the neural network is then set to match the number of directions that our 

device can cover.  

 

In order to simulate environments, we load grid maps into the program. The program is 

using information from a metric map to simulate the sensor readings. However, the robot 

does not have a global knowledge of the metric map nor does it create one. It is only 

getting information about the surroundings through the simulated sensors. 

 

We simulate three types of sensor error: range data noise, errors in odometry due to 

slippage, and sensor failure. Uniform noise is added to the range data values to simulate 

error in range data due to hardware precision. A parameter of the simulation controls the 

maximum noise.  Sensor failure sets the value of certain directions in the range data to 0 

as if the sensor was not working. This allows us to see how the robot reacts to this 

situation. 

 

Error in odometry is based on a simplified simulation of slippage. The error in odometry 

is computed as follows:  

timeelapsedfactorslippingspeedcurrentspeedpreviousslipping _*_*)__( −=  

 

The value slipping is added to the distance traveled by the robot at that particular time. 

The slipping factor is an arbitrary number between 0 and 1. The odometey error is 

computed every frame. For example, if the slipping factor is 1, previous_speed is 0, 

current speed is 5 units/sec, and the elapsed_time is 0.5 second, the robot should move 

2.5 units but slipping will be equal to -2.5 and therefore the robot will not move. Next 

frame, if the robot’s speed is still 5 units/sec and the elapse time since last frame is again 

0.5, the robot will move 2.5 units since the slipping will be null. This simplified 

simulation of slippage will introduce a small error in odometry for every acceleration or 
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deceleration of the robot. Even though this is not a realistic model of slippage and drift, it 

adds enough odometry error to test the robustness of our learning approach. 

 

We didn’t simulate any rotational error because the robot has access to a compass at all 

time. The compass error should be minimal and therefore should not affect the creation of 

the topological map or navigation. 

 

We note that other standard robotic simulators such as CARMEN [34] or MMRA [36] 

which includes Robodaemon [35] could be used just as well for the experiments. We 

used our own simulator mostly out of convenience. 
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CHAPTER 4  
_______________________________________ 
 
                   Landmark Detection 
 
The robot needs to decide on each step whether it should have a landmark at that location 

or not. Once a landmark is discovered, it is sent to the function that handles the updating 

of the topological map.  Hence, the topological map is built incrementally, during the 

exploration of the environment.  We consider two different algorithms for landmark 

detection: an edge detection algorithm and neural network. We describe both of them 

below. 

 

4.1. Range Data 

 

As described in Chapter 3, we use laser range finder sensors as input for the robot.  An 

example of a sensor setup is given in Figure 7 below.  A sensor is placed at every 10 

degrees and therefore, the input that the robot gets consists of 36 distances all around it. 

Although robots commonly have a sensor every 15 degree for a total of 24 measurements 

[8, 5] or sometime even less, it is not unconceivable to have a total of 36 measures, 

especially if we use the panning mirror technology described in Chapter 2. 

 
Figure 9 : Range Data Representation on a Small Map 
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4.1. Edge Detection 

 

This technique is used as a reference point with which we will compare the results of the 

learning algorithm.  The main idea is that we want the algorithm to detect a landmark 

when there is a change in the number of possible directions. For example, a landmark 

should be detected when coming from a hallway which allows for two possible directions 

of movement (forward and back) and getting into a T-intersection which allows three 

directions (back, left and right). 

 

 

 

 
Figure 10 : Range Data in a Hallway 

 

In the hallway situation, the distance in the directions pointing down the hall will be 

significantly larger than the directions pointing towards the walls of the hall. When 

comparing adjacent distance of the entire range data, there will be a sudden and large 

“jump” in size of the distances from one value to the next in the direction pointing to the 

end of the wall (e.g. distance 1 & 2 in Figure 8). By counting the number of large 

differences between adjacent values in the range data and dividing it by 2, we have an 

estimate of the number of possible directions in which the robot can travel. 

Unfortunately, this way of counting may miss one count and find a odd number (distance 

2, 3, 4 may not be counted as 1 large difference because the distance 2 and 3 and the 

distance 3 and 4 may be under the threshold). In order to handle this problem, if the 

division gives a float, we truncate the floating point and add one. 

A landmark will be detected when the number of possible paths changes. When the robot 

moves from a hallway to a T-intersection, the number of counted directions for a hallway 

is two, and the number of directions of a T-intersection is three. That change will be 

detected as a landmark.  
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This method of landmark detection is rotational invariant as long as we have a reasonable 

amount of sensors around the robot. In Figure 10, if the robot were to rotate clockwise, 

the sensor labeled ‘3’ would measure the distance to the end of the hall while the sensor 

labeled ‘2’ would now measure the distance to side of the wall. It would not affect the 

number of possible paths and therefore the algorithm would not detect a landmark as a 

result of this rotation. 

 

This simple algorithm will give us more landmark than desired because when the robot 

will move from the T-intersection back to a hallway, it will detect an extra landmark that 

may not be desired. But this gives us a quick and simplified approach to landmark 

detection. 
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4.2. Neural Network 

 

The neural network used in this project is based on a back propagation neural network 

with some modification. It has 2 hidden layers and the input layer has an input history 

that is also fed as input into the neural network.  

 

4.2.1. Input preprocessing 

The range data gives us the distance at which there is an obstacle in certain directions. 

The distance in this program is given in pixels since the map is loaded from a bitmap. 

Depending on the size of the map, the range data may give us input that have a value of 

50, 100 or more. The maximum range is determined by the sensor. By default, our 

sensors have a maximum range of 50 units. A neural network works better if the input is 

between -1 and 1 so we normalize the input to match neural network requirements as 

explained in Chapter 3. 

4.2.2. The Input 

The number of input (I) depends on how many sensors around the robot we are using.  

As explained in the previous paragraph, we are going to have a sensor every 10 degrees 

which gives us 36 inputs for the neural network. This gives us enough precision on the 

environment without having too many inputs in the neural network. Too many input 

neurons would slow down the computation done by the neural network that must be done 

in real time. In this project, it would drop the frame rate; on a real robot, it would lower 

the input rate and therefore the reaction time of the robot.  

Each input keeps track of the history of input for a certain number of times (H). For the 

landmark detection neural network, we used 6 history of inputs. We determined 

experimentally that 6 history of inputs gave enough history information of approaching 

an landmark to the neural network while keeping a good frame rate in the simulation. If 

this landmark detection was used on a real robot, the number of history of inputs should 

be determined by the hardware used so that the computer still has time to execute the 

landmark detection algorithm in between each range data query. 
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So the actual neural network has I*H number of input neurons. So we have the input of 

each neuron at time t, the input of each neuron at time t-1 and so on until the input of 

each neuron at time t-H. 

In order to illustrate the architecture of the neural network, we give the example (Figure 

12) which has 3 sensors with 3 steps of history in memory which gives us 9 inputs to the 

neural network. It is important to note that there are no weights associated with the links 

that creates the history of input. When we are entering a new input to the neural network 

in our example, every t-2 values are discarded, t-1 values are copied onto t-2 values, t 

values are copied onto t-1 values and the new entry is stored in t values. The actual neural 

network inputs are the input with memory layer. 

The number of inputs grows really fast each time we decide to have more history or more 

sensors and we have to decide carefully how much history and sensory data is really 

needed. 

With this history of inputs or memory of inputs, the neural network will make a decision 

based on where it is now and where it was the passed couple of steps. Using this 

technique, the neural network should recognize the “approach” towards a landmark and 

drop a landmark only when it is closer to the center of the intersection. 

4.2.3. The hidden layers 

There are two hidden layers. The first hidden layer (Time dependent layer) has an 

unconventional connection to the input layer.  This layer has (H) group of neurons with 

(T) neurons per group.  Every neuron of the first group are connected to all neuron of the 

input layer that corresponds to time t, every neuron of the second group are connected to 

all neurons of the input layer that corresponds to time t-1, etc… 

The network at this layer can take decision based on a time independent input. At this 

level, we are allowing the neural network to make computation at each time step without 

have other time step interfere with the computation. Each group of neuron makes a 

decision based on the information of the range data at one point in time. The second 

hidden layer (Normal layer) is just a normal neural network layer where every neuron of 

this layer is connected to every neuron of the previous layer. At this level, the network 

blends the different history inputs. The previous layer made decisions based on the range 
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data at each time step; we now need to take those decisions which are related to the range 

data of different time step (t, t-1, t-2) and take into account all the time step. 

There are 2 main motivations in such architecture for the hidden layers. First of all, by 

grouping the neurons depending on time, we are forcing the neural network to 

“compress” the input at each time step before making a decision. It seems a reasonable 

architecture since we want the neural network to take into account the environment at 

each time step. Second of all, by not connecting every neuron of the first hidden layer to 

the input layer, we are reducing the number of computation that has to be done by the 

neural network and therefore making it a little faster. 

4.2.4. The output 

The point of this neural network is to know whether or not we should add a landmark at a 

specific location based on (H) history input. So the output is a single neuron that gives us 

a true or false output. The output is actually a floating point, so if the output is above 0.5, 

the output is true; if it is below 0.5, the output is false. 

4.2.5. The training 

We are using a supervised learning algorithm to train the neural network. The error 

correction is the one of a back propagation neural network. After some experimentation 

with the learning rate, a learning rate of 0.02 gave a stable learning process. For better 

flexibility, noise is added to the input to the neural network. The architecture of the 

neural network is as follows: 36 inputs corresponding to the 36 distance sensors data with 

6 input history for a total of 216 actual input to the neural network, 12 neurons per group 

with 6 groups (1 per input history) for a total of 72 neurons at the first hidden layer, 24 

neurons for the second hidden layer and 1 output. We designed different map with 

different intersection and make the robot walk back and forth on those map following a 

path. On each step on the path, we have a target value that is used to train the neural 

network.  
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The map below (Figure 11) is an example of maps we use to train the neural network. 

Obstacles (walls) are represented in black. The white area is where the robot can travel. 

The robot we are training will follow the blue and red line. The color code tells the 

network what is the desired response (target value). Blue (RGB = 0,0,255) means no 

landmark; it trains the network to respond 0 and 

the darker the red the more there should be a 

landmark up to Red (RGB = 255,0,0) which 

trains the network to respond 1. 

As the robot walks along the line, the neural 

network receives information from the sensors 

and returns a value (TRUE / FALSE), and the 

color coded line is used as target value to train 

the network using back propagation. For this 

example (Figure 11) we have another training 

map in APPENDIX A, where the line is vertical 

and stops at the intersection so that the neural network would also recognize this 

intersection approaching from the top. This method to train the neural net is very flexible, 

we can easily modify the desired target value or the kind of intersection the neural net 

will encounter. If the neural network does not handle a certain kind of intersection very 

well, we can very easily add a map with this kind of intersection to the list of training 

maps and retrain a new neural network. 

 

 

  

 
Figure 11 : Example of a Training Map 
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Figure 12 : Neural network Architecture 3-3-2-4-1 

 

Using this architecture, we allow the neural network to sort information at each time step 

then make a final decision based on a history of input which allows it to recognize the 

fact that it is “approaching” a landmark and drop a landmark only where needed and not 

before or after. Since we are training the neural network online approaching each 

intersection from any side, it will detect an intersection no matter where it is coming 

from. The neural network has no knowledge of the position of each intersection. It is 

designed to recognize intersections that are similar to what it was trained on. Also, a 

neural network is much more flexible to noise that would occur in a real robot as we will 

show in the results section.  
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CHAPTER 5  
_______________________________________ 
 
                       Topological Map 
 
Every landmark found by the algorithm described in the previous chapter is to be added 

to the topological map if necessary. In an environment such as Figure 13, we want the 

topological map to resemble Figure 14 where the T-intersection and every room entrance 

and room is represented by a node. 

 

 
Figure 13 : Demo Map 1 

 

 

 

Figure 14 : Ideal Topological Map for Demo Map 1 

 

 



 

44 

 
Figure 15 : Actual Topological Map by the Robot for Map Demo 1 

 

The topological map created by the robot (Figure 15) has most of the features we are 

looking for. The green points are nodes, the red point is the closest node of the current 

location of the robot, the x show the current location of the robot and the blue lines 

represents the links between the nodes which are obstacle free paths from one landmark 

to the next. 

 

Node creation 

The new node can be added in an unexplored area where it will have only one link 

connecting it to the previous node, but it can also be added in between two nodes. The 

landmark detection algorithm may miss an intersection going one way and find it coming 

back. Therefore, it is necessary to consider the option of a node added in between two 

existing nodes. 

 

Allowing the creation of loops within the topological map is important for more complex 

environment. A loop could exist within a room going around objects or in a building that 

has a hallway that loops around. At every node creation, we check the topological map 
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recursively up to a limited depth. The depth limit is a variable that the user can set. We 

are checking for two possibilities. Either the node we want to add is within the minimum 

distance of some other node within the topological map in which case, we simply link the 

previous node (P) to that node we found to be close to the robot as shown on Figure 16, 

or the link connecting the current position (C) to the previous node (P) is crossing some 

other link (linking node A and B) in the topological map in which case, we create a node 

that is linked to node A, B and P and then create a node at the current position (C) as 

displayed on Figure 17. It is important to note that we do not need absolute coordinates in 

order to check for loops, we use relative coordinates from the robots current position. 

With the estimated distance traveled gives by the robot’s odometer and the recorded 

distance and direction of each link, we can find loops. 

 

 
Figure 16: Merging with existing node 

 

 
Figure 17: Link Crossing 
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Figure 18: Legend 

 

Since each intersection should be represented by a unique landmark, each node has a 

minimum distance within which no other node should exist. This minimum distance 

doesn’t have to be the same for every node since it depends on how much obstacle free 

space surrounds the node. It is computed from the range data. We find the smallest value 

RangeData[i]+RangeData[i+180degree] and multiply this value by a user defined 

parameter r to compute the minimum distance value. The parameter r allows the user to 

have more flexibility on how many nodes will be created in the topological map. The 

lower r is, the more nodes will be created since they will be allowed to be created closer 

from one another. We determined experimentally that setting r to 0.9 gives good results. 

It means that each node will cover 90% of the largest obstacle free radius around the 

node. This value works for all tested environment and would be recommended if used on 

a real robot. 

Because of this method, each landmark found doesn’t necessarily translate into a new 

node in the topological map. There must not be any node within the minimum distance of 

the node we are adding and the new node must not be within the minimum distance of 

another node close by. The landmark detection algorithm may find multiple landmarks 

within an intersection. This will be translated into a unique node in the topological map. 

 

Each time a node is created; the robot copies the values of its current range data and 

saves them in the current node. For node created at intersections, the robot needs to travel 

to this intersection in order to the save the current range data. When the robot comes back 

Future Link if a 
node is created 

Existing Links 

Closest node to Current 
Position (P) 

Robot Current Position (C) 

Future Node 

Node 
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at the position of this node, it can check if the range data stored is similar to what it can 

see now. We will describe how this comparison is done and how the robot relative 

position is updated in the next paragraph. 

 

Position Tracking & Localization 

At all times, the robot knows which node in the topological map is the closest to its 

current position. We will refer to this node as the “current node” from now on. Any 

newly created node is set as the current node, but as the robot travels in a part of the 

environment that has already been mapped, it is keeping track and updating the current 

node for localization. In addition to the current node, the robot keeps track of an 

estimation of the distance in x and y to the current node. 

But because the distance to current node is estimated based on odometry which is subject 

to errors due to drift and slippage, the robots belief of the location of the current node can 

be erroneous and therefore the position of every node in the topological map becomes 

erroneous since the position of each node is relative to the position of neighboring nodes.  

Figure 19 illustrates this problem: the actual topological map is displayed in grey and the 

erroneous topological map is displayed in color. The position of the current node is the 

red point. As we can see, because of the error due to the drift & slippage, the topological 

map doesn’t represent the actual location of landmarks. The node representing the T-

intersection is within an obstacle. 
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Figure 19: Erroneous position of nodes due to drift and slippage 

 

Because of this problem, the robot needs to perform another type of localization every 

time it believes that it is over the current node. 

 

 This localization consists of correcting the distance to the current node by comparing the 

current range data gathered by the robot (Robot Range Data) and the current node’s saved 

copy of the range data (Local Range Data) 

Because the range information is taken at certain angle and not continuous, the robot will 

rotate so that one of its range data value points towards the north (orientation 0).  

The valid directions for comparison are izeRangeDataS

360

. 

The comparison is also done considering the current orientation of the robot. If the range 

information is taken every 10 degrees and the robot is pointing toward 90 degrees (East), 

we will compare the value of the Local Range Data of the 0 degree (North) to the value 

of the Robot Range Data of the degree 270 which corresponds to the North. 

If the average difference between each values of the Robot Range Data and its 

corresponding value of the Local Range Data is larger than a threshold, the robot tries to 
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correct the error by modifying the its relative position to the closest node. We compute 

the error as shown in the following equation: 

 

izeRangeDataS

iDataLocalRangeiDataRobotRange

Error i

∑ −

=

][][
 

 

The threshold is .5 by default. This value was found to be efficient by experimentation. If 

the threshold is too small, the robot would systematically relocalize even if it is not 

necessary. If the threshold is too large, the robot would have a large error before trying to 

correct its position and it may be too far from the real location of the node to correct its 

error. 

 

The robot computes the distance to the current node using the odometer and compass. 

The comparison of range data explained above is done when the distance to current node 

is under 0.01. Because the distance to the current node will unlikely ever be null, we 

chose a small distance where we can consider that the distance is so small that the 

difference doesn’t affect the result of the comparison. If using this algorithm on a real 

robot, this value will depend on the precision of motion of the robot and the precision of 

the odometer. 

 

 If the robot believes it is at the same location as the node and the Robot Range Data 

doesn’t match the Local Range Data, it will modify this distance from current node and 

go to the new location of that current node. We will now explain the algorithm that 

modifies the distance from current when it is known to be inaccurate. 
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Figure 20: Robot Range Data at wrong location & Local Range Data 

 

In Figure 20, the robot and its range data values are displayed in red while the Local 

Range Data taken at the time of the node creation are in blue. The robot distance to node 

is null, but the comparison of the range data shows that it is not at the right location. The 

robot must modify its relative position to the current node (blue). 

 

 
Figure 21: Range Data Comparison 

 

The algorithm chooses for each direction if the relative position to the current node 

should be to the right or to the left and if it should be higher or lower. We then compute 

ydifference as: 

 

( ) ( )iDirectioniDataLocalRangeiDataRobotRangeeydifferenc cos][][ ⋅−=  
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As shown in Figure 22, if ydifference is between .5 and -.5 (same value as the threshold 

when comparing the two range data); the distances are similar enough and no 

modification in the relative position of the robot should be done. Otherwise, we set 

ydirection to -1 or 1. 

 

 
Figure 22: Direction decision function. 

 

This is done for every direction. In the example of Figure 21, we would have 8 different 

ydirection which are averaged. The resulting value ydirection_average is returned and 

used to reposition the relative y coordinate of the robot to the current node.  

 

This algorithm is also applied to find the relative x coordinate of the robot to the current 

node using this equation to find xdifference: 

( ) ( )iDirectioniDataLocalRangeiDataRobotRangeexdifferenc sin][][ ⋅−=  

 

Basically, for every direction, we compute how much the robot seems to be off target and 

it which direction and “vote” if the robot should go to the right or left on the x axis and if 

it should go up or down in the y axis. In Figure 20, the range data from angle 90 would 

tell the robot to go too much to the left if the “votes” were weighted by the magnitude of 

the xdifference. This “voting” system insures that the modification of the relative 

coordinate of the robot will be in the right direction. 
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List of direction towards potential paths 

Each node in the topological map has a list of directions where an obstacle free path 

towards another room potentially exists. This list of paths is later used by the navigation 

algorithm to discover unexplored areas. Once the robot explored a path in the list, a flag 

associated with the path is set to keep track of explored paths. Since the robot has a on 

board compass, the directions of paths will be based on the compass and therefore 

absolute. 

 In order to create the list of directions, the robot parses the range data array to find any 

distances that are larger than a threshold t. Each consecutive distance that is larger than 

that threshold will be listed as an unexplored path. 

 t is computed as follows: 

k
t

max
=  

where max is the largest value in the range data and k is a parameter set by the user. 

The larger k is, the more sensitive the path detection becomes. We defined by 

experimentation that using k = 2 is an efficient value for detecting paths. When k = 2, any 

directions where the range data value is larger than half the maximum value of the range 

data will be add to the list of paths. 

 

We are illustrating the process of creating the list with an example. In Figure 23, we are 

representing the range data array (RD) on top of the environment. The largest distance in 

the array is RD[0]. RD[0], RD[8] – RD[9] and RD[26] – RD[27] will be listed as 

unexplored paths. If the robot is in a closed room where every value in the range data is 

larger than variable “max”, no direction will be listed as unexplored paths. 
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Figure 23: Range Data representation on simple map 

 

Each links in the topological have the estimated length between the two nodes it is 

linking and the direction. The relative position of each node is therefore known but there 

is no absolute position of nodes or links. 
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CHAPTER 6  
_______________________________________ 
 
   Navigation for Topological Map Building  
 
In order to have the robot generating the topological map without human intervention, we 

need to have an algorithm for navigation. There is two level of abstraction for navigation. 

The robot first estimates the approximate desired direction (d) in which it needs to go. 

Desired direction (d), updated every time a landmark is found, is either an unexplored 

path taken from the current node or the direction of an existing node that leads to a node 

that still has unexplored paths. In Figure 24, the red point represent the robots current 

location, the green point represents explored nodes without unexplored paths and the blue 

point represents an explored node with still unexplored paths. The robot cannot go 

directly towards the blue point since there could be obstacles. It needs to go through the 

T-intersection in order to reach the unexplored path and finish the topological map. The 

desired direction (d) in this case would point towards the T-intersection. 

 

 

 

Figure 24: Simple topological map 
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For the second level of abstraction, we developed an algorithm that allows us to merge 

two variables: following the desired direction (d) set by the first level of abstraction while 

avoiding immediate collision with potential obstacle. Standard obstacle avoidance 

doesn’t easily let us merge those two variables. 

We modify the range data by weighting each of its values with a bell curve so that the 

maximum weight is applied in the desired direction (d). We then make the robot turn 

towards the angle corresponding to the largest value of this weighted range data. By 

distorting the range data, we emphasize the desired direction while keeping detailed 

information given by the range data and therefore merging the desired direction and 

obstacle avoidance. 

Every cell of the range data is multiplied by a y value computed using the following bell 

curve equation. 
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σ  let us dynamically set the strength of the weight depending on the distance of the 

obstacle in front of the robot ]0[RangeData . We add a small value to ]0[RangeData  to 

avoid division by 0 when the robot is touching a wall which would result in 

]0[RangeData  being null. µ and x allows us to map the desired direction (d) to the 

strongest weight of the bell curve. angle is the reading from the compass of the robot. 

 

We arbitrarily chose a bell curve that ranges between 0 and 4 and we map each value of 

the range data to a value on the bell curve so that the value in the range data pointing 

towards the desired direction (d) matches the highest value of the bell curve which is at 

x=2 as show in Figure 25. We set µ to 2 because we chose to have the largest value of the 

bell curve at 2. 
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The weight put on the importance of the desired direction depends on the distance of the 

obstacle in front of the robot. When an obstacle is close in front, σ is large, and the bell 

curve is wide. The bell curve is narrow when the obstacle in front is far. When the robot 

is very close to an obstacle, we cannot put as much emphasis on the desired direction we 

want to robot to follow; it needs to avoid the obstacle first. When there is nothing in front 

of the robot, σ is small, the bell curve is narrow, we put the emphasis on the desired 

direction we want the robot to follow all details of the environment doesn’t matter. We 

then smooth the resulting array by averaging each array cell with its 2 neighboring cells. 

The robot turns in the direction of the largest distance in that weighted and smoothed 

range data. 

 

This obstacle avoidance algorithm can easily be used on a real robot since scale doesn’t 

matter. The robot will always choose to turn towards the angle with the largest value in 

the modified range data. 

 

Figure 25 shows the bell curve we are using with 5.=σ  
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Figure 25: Bell Curve 

 

We illustrate in the following examples how the modified range data reacts to different 

distances of obstacles in front of the robot. Figure 26 and Figure 27 demonstrate how the 

bell curve modifies the range data. Figure 26.1 shows the range data when the robot is in 

front of an obstacle. The robot’s position is at the center of the range data represented by 
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a blue point. Figure 26.2 shows the weighted range data. Although the desired direction is 

15 degrees to the right, the largest value of the weighted range data is at 10 degrees 

towards the left. The robot will turn left in order to avoid the obstacle. 

 
Figure 26 : 1.Range Data and 2. Weighted Range Data with obstacle in front of the robot 

 

Once the obstacle is not in front of the robot, the emphasis is put on the desired direction. 

Figure 27.1 shows the range data when the robot does not have any obstacle in front of it 

and Figure 27.2 show the weighted range data in that same situation. As we can see, the 

largest value in the weighted range data is in front of the robot, and therefore, the latter 

will go straight in the desired direction. 

 

Modifying the range data for navigation as we do it is very efficient. It balances the 

information of the range data and the direction in which we want to robot to go 

depending on the distance of the obstacle in front of the robot. The robot will therefore 

avoid any obstacle close by and still go towards the wanted direction. 
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Figure 27 : 1.Range Data and 2. Weighted Range Data with no obstacle in front of the robot 

 

In some cases, when desired direction is off centered compared to where the path really is 

or when the desired direction points towards a dead end, this navigation control will fail 

and the robot will be in a local or global minima. This happens when the landmark is 

detected too early when approaching an intersection or in a room that has only one exit. 

Those cases will be handled by the function “NextMove” which check if the robot is 

stuck. This function is explained in the next paragraph. 

 

Navigation process 

Figure 63 that can be found in the Appendix is the flowchart of the robot’s update 

function which is called every frame. Figure 28, Figure 29 and Figure 30 are the pseudo 

code corresponding to that flowchart. 

This function is responsible for calling the landmark detection algorithm, the topological 

map creation, and controlling the robots motion. 

Every time Update is called, it first calls “ParseRangeData”, the function that checks 

range data and add a node if a landmark is found. As mentioned in the previous chapter, 

the node is added only if it isn’t too close from the previous node. If it isn’t too close, we 

then check the node exists at that particular before adding the node. The node may be 
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created in between 2 existing nodes or as a new node in an unexplored area. When a new 

node is created, the new node is updated as the current closest node. The robot keeps 

track of the distance to current closest node. This value would be updated after the 

function AddNode() if necessary. If no landmark was found, the robot checks if it should 

update the current closest node, if it does update the current closest node, it also sets the 

flag Localize telling the robot that it needs to check its position (Position Tracking). The 

robot may be traveling towards a mapped area and getting closer to another node and the 

current closest node should be updated.  

Before calling NextMove() which is responsible for updating the desired direction and 

chooses the robot’s immediate response to the current situation, we check if the robot is 

close to current node. The fact that the robot is close to the current closest node triggers 

the update of the desired direction (d). NextMove function checks if the flag Localize has 

been set. If the flag is set, the robot will track its position as explained in previous 

section. 

If the robot doesn’t need to track its position and it is close to the current landmark, the 

desired direction must be updated. First it checks if there is a path to be explored at the 

current node. If there is an unexplored path, the desired direction is set to the direction of 

this unexplored path. If all paths at the current node have been explored, it checks if there 

still exist an unexplored path in the entire topological map.  

When the robot is not close to the current node and the flag stuck has been set, the robot 

is forced to go back towards the current node which in turns makes it check if there are 

other unexplored paths in the topological map. The flag stuck is set to true when the robot 

range data value in front of it is smaller than 1.5. This value is a parameter that can be 

changed. By experimentation we realized that the value 1.5 makes the robot detect that it 

is going towards a dead end soon enough. 

 
 
Update() 

   ParseRangeData(); 

   Localize = CloseToCurrentNode(); 

   NextMove(Localize); 

   return; 

Figure 28: Pseudo-code of the Robot Update Function 
 
ParseRangeData() 
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   LandmarkFound = RunNN(); 

   if (LandmarkFound) 

      AddNode(); 

      UpdateDistanceFromCurrentNode(); 

   else 

      CheckCurrentPosition();    

   return; 

Figure 29: Pseudo-code of the ParseRangeData Function 
 
NextMove() 

   if (Localize) 

      if (OverCurrentNode()) 

         RangeDataIdentical = CompareRangeData(); 

         if (RangeDataIdentical) 

            goto NormalProcessing; 

         else  

            ModifyDistanceToCurrentNode(); 

      else 

         MoveSlowlyTowardsCurrentNode(); 

      return; 

   NormalProcessing: 

   if(CloseToCurrentLandmark) 

      Direction = CheckForExpansion(); 

      if(Direction==NULL) 

         Direction = CheckForExpansionInTopMap(); 

         if(Direction==NULL) 

            MessageBox(“Topological Map Done”); 

            return; 

      g_DesiredDirection = Direction; 

      MoveRobot(Direction); 

      return; 

   else 

      if(Stuck) 

         HandleBeingStuck(); 

      else 

         Move(g_DesiredDirection); 

      return; 

   return; 

Figure 30:Pseudo-code of the NextMove Function 
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CHAPTER 7  
_______________________________________ 
 
Experimental Results 
 

7.1. Landmark Detection with neural network 
 
We chose to use 36 inputs with 6 histories per input, 12 neurons per time dependent 

groups and 24 neurons in the Normal Layer.  

We have trained 10 neural networks with 0.02 learning rate on the following training 

maps shown in appendix A. They cover the main intersection at different scale that we 

expect the robot to encounter in our environments. That is, cross intersection, T-

intersection, 90 degree turns, hallways and rooms. Each map has a path that the robot 

follows and target values on the path using the color code explained in section “Training 

Neural Network” (IV, C, f) 

 

We have saved the mean squared error as we were training the neural network in order to 

see how well the neural network is learning. The 10 neural networks evolve the same way 

while being trained. The mean squared error drops quickly on the first 400 or 500 

iteration and stabilizes around 0.05. The graph below presents those numbers. We only 

included data after 200 iterations for clarity. The complete data including the error at 50 

is included in Appendix A 
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Figure 31: Evolution of the Mean Squared Error over Time during Training 

  

 

As we can see in Figure 31, the mean squared error stabilizes consistently for all neural 

networks around 0.005 even neural networks 3 which still had a much higher error after 

200 iterations. Considering the fact that those network are learning a man made target, 

the ending mean squared error is low. 

 

We ran the 10 neural networks on 17 testing map. The maps & detailed results for neural 

network 3 are shown on the Table 1. We also show the average mean squared error and 

standard deviation for every map on Figure 32. 
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Figure 32: Average Mean Squared Error and Standard Deviation Per Map 

 

We notice on the Figure that all networks have done particularly poorly results on map 

16. As shown on the figure below, the neural network 9 finds the landmark offset 

compared to what we would like to have. 
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Figure 33 : Neural Network 9 on Map 16 

 

On the other hand, all network do well on map on map 7 which is a map quite close to the 

basic T-intersection they where trained on. 

 

We are also showing in the next table the detailed results and map for neural network 3. 

Each map shows where the network detected landmarks as it travels along the blue & red 

line. The green crosses are the place where the neural network detected a landmark. We 

are only displaying the detailed result for one neural network because the results are 

consistent from one neural network to another. There is not much difference on where the 

neural network places the landmark. We see that the network handles pretty well most 

maps, even those X intersection where the intersecting hallways aren’t perfectly aligned. 

On several maps, the network detects landmark at the beginning of the path (left side of 

the line); we notice this behavior on map 1, 2, 3, 4, 8, 12, 13, 14. We can ignore this error 

due to clear history that only happen on the extremity of the path. 

This is most probably due to the cleared history as it starts. As a matter of fact, for each 

map, we clear the history of the input neurons that we set to 0. The network detects that 

as a landmark. 

 

The results on map 17 are quite interesting because the network was never trained on a 45 

degree turn; it was only trained on 90 turn. Even though, the network is doing quite well 

on this map. It put landmark on the two turns. 
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1  2  3  

4  5  6  

7  8  9  

10  11  12  
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13  14  15  

16  17  

 

Table 1 : Detailed Results For Neural Network 3 
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The results in the following table are the mean square error and standard deviation on all 

maps for each neural network. Neural network 9 has poor results compare to other neural 

nets while neural network 3 or 4 have much better results. 
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Figure 34: Average Mean Squared Error and Standard Deviation per Neural Network 

 

In order to better compare how the different neural networks react, we ran each neural 

network on map 3 and map 17 and show the results in the Appendix in Table 4. 

We chose map 3 because it is an off-axis cross intersection and map 17 because it is a 45 

degree turn on which no neural network was trained. We ran those networks with up to 

0.5 of noise on the input data to see how robust they are. 

Surprisingly, Neural network 7 and 10 have a better result on map 17 than neural network 

3 and 4 which have the best average mean squared error. Landmarks are only found at the 

35 degree turn and nowhere else. The other neural network finds the 35 degree turns and 

a couple of landmark in between the 2 turns. Networks with the poor average mean 

squared error such as network 9 are off-centered on map 3. 

The overall result is satisfactory; all neural networks find intersection consistently. 
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7.2. Topological Map Creation 

All the following results except section 7.2.5. have been created with the robot self 

navigation algorithm and without human intervention. 

The topological map creation depends on multiple parameters. The most important are:  

Path finder sensitivity (k) on page 40, Close to Current Landmark threshold on page 47, 

ratio of distance between nodes (r) on page 35, stuck detection sensitivity on page 46. 

The default values were used for all experiment. Those parameters can be modified to 

improve the resulting topological maps but the default values where determined 

experimentally to work well under most circumstances.  

7.2.1. Comparing different Landmark detection on different maps 

We ran the robot letting it create a topological map of the map shown in figure Figure 35.  
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Figure 35: Demo Map 1 

 

 
Figure 36: Topological Map of Demo1 using Edge 

Detection 

 

 
Figure 37: Topological Map of Demo1 with Neural 

Network 4 

 

 
Figure 38: Topological Map of Demo1 with 

Neural Network 9 

 

 

 

We first chose the Edge Detection algorithm to detect landmarks. The result is displayed 

on Figure 36. We notice that the Edge Detection algorithm is much too sensible, it detects 

too many landmarks. Figure 37 and Figure 38 show the topological map created using 

two different neural networks. Figure 37 was created using the neural network 4 which 

has the lowest mean squared error (Figure 34) while Figure 38 was created using the 

neural network 9 which has the highest mean squared error. The neural network 9 never 

detected the T-Intersection and therefore never completed the topological map correctly. 
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We also ran the robot with neural network 4 and with the Edge Detection algorithm on a 

map containing a loop show below: 

 

 

 

 
Figure 41: Demo Map 2 

 

We notice the same pattern; the Edge Detection algorithm is too sensible and therefore 

creates too many landmarks while the neural network 4 only finds the rooms as 

landmarks. We can also show that the topological map creates loops accurately no matter 

which landmark detection technique is used. 

 

We also ran the robot using neural network 4 to detect landmarks on larger maps and got 

the following results. 

 

 
Figure 39: Topological Map of Demo2 with Edge 

Detection 

 
Figure 40: Topological Map of Demo2 with 

Neural Network 4 
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Figure 42: Demo Map 3 

 
Figure 43: Demo Map 4 

 
Figure 44: Topological Map of Demo 3 

 
Figure 45: Topological Map of Demo 4 

 

We notice that on Demo Map 3, the robot didn’t detect the room on the lower left corner. 

Although the robot went in the room as it was creating the topological map, the neural 

network didn’t detect a landmark while in the room. The topological map of Demo Map 4 

is not as clean as some other maps, it detected multiple landmark for the same 

intersection on many occasions. 

 

As we have shown on different maps, this approach creates one node per intersection or 

rooms. It is very similar to what Kuiper & Byun’s robot accomplishes except that their 

approach won’t mark rooms as one single node. On the other hand, on large complex 

map such as Demo Map 4, our approach doesn’t guaranty that each intersection will have 

only one node. An extra step, post process, would be needed to clean up the topological 

map. Zimmer’s approach is not comparable because his landmark doesn’t have to 
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represent an intersection. Zimmer’s topological map would have much more nodes 

similar to our “edge detection algorithm” (Figure 36). 

7.2.2. Robot Slipping  

We ran the robot on Demo Map 5 with no slipping simulated and with slipping simulated.  

 
Figure 46: Demo Map 5 

 
Figure 47: Topological Map created without 

slipping 

 
Figure 48: Topological Map created with 

slipping 

 

There is no significant difference between the two maps although the robot drifted 177 

pixels while braking or accelerating on a map where the longest straight line is 61 pixels. 

Some of this drifting going to a room was canceled out by drifting coming back from a 

room. But the algorithm check the accuracy of location corrected errors when needed. 

Large loops may present a problem because the robot will travel a great distance before 

being able to check localization and therefore the error due to slipping will accumulate. 

When the robot closes the loop and check localization, the error can sometimes be too 

large to be corrected. 

7.2.3. Adding Noise to Range data 
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We first ran Neural Network 4 on the testing set with different maximum noise values. 

The results are displayed below: 
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Figure 49: Average Mean Squared Error and Standard Deviation with Different Max Noise Values 

 

On those testing maps, the hallways are between 60 and 120 units long and the width is 

between 6 and 12 units long. We see that the error starts to be important when the max 

noise is at 20 units. The error is expected to be important when the maximum amount of 

noise is larger than the width of the hallways. 

 

Still using Demo Map 5, we ran the robot with neural network 4 for landmark detection 

with noise added to the range data. We added .5 unit maximum noise in Figure 51, 1 unit 

in Figure 52 and 5 units in Figure 53. In order to realize the magnitude of this noise, we 

would like to precise that the rooms of this environment are 12 units by 14 units and the 

hallways have a width of 4 units. 
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Figure 50: Topological Map created without 

noise 

 
Figure 51: Topological Map created with 0.5 unit 

maximum noise 

 

 
Figure 52: Topological Map created with 1 units 

maximum noise 

 
Figure 53: Topological Map created with 5 units 

maximum noise 

 

The topological map in Figure 53 when the noise is larger than the width of the hallway, 

the map is incomplete. But with more realistic noise, the landmark creation, map creation 

and localization was done without error as shown on Figure 51 and Figure 52. 

 

We show here that our approach is just as robust as Kuiper and Byun’s approach when 

adding sensory errors. We are still able to create the topological map as long as the 

maximum noise is smaller than the width of the hallway. 
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7.2.4. Sensor Failure 

Adding sensor failure is another way to test the robustness of an algorithm. We can think 

of situations where the robot has one or more sensor failing and the robot is inaccessible 

for immediate repair. It is therefore important that the robot is still properly function 

without all sensor working properly.  

We first ran Neural Network 4 on the set of testing maps and we compiled the following 

results: 

0
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0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

No Failure 1 Failing 3 Failing 5 Failing

Mean Squared Error Standard Deviation

 
Figure 54: Average Mean Squared Error and Standard Deviation with Failing Sensors 

 

The Neural Network 4 is still working very well even with 1, 3 or even 5 failing sensors 

out of 36. We see that the neural network is very robust even when we destroy some of 

its inputs data. But since the autonomous control of the robot also uses the range data  

we ran the robot with Neural Network 4 on Demo Map 5 with 3 sensor failing chosen 

randomly. We see in Figure 55.a the robot position with a red dot in the lower room of 

Demo Map 5. Figure 55.b shows the topological map created and Figure 55.c the range 

data at current location with 3 sensors returning 0 instead of the distance to obstacle in 

those directions. 
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Figure 55: Topological Map with 3 sensor failing 

7.2.5. Human robot control vs Auto navigation 

For the last experiment, we used a map of part of the 3rd floor of the McConnell building 

at McGill University shown on Figure 56. 
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Figure 56: Map of the 3rd floor of McConnell Building 

 
Figure 57: Topological map created with human control of the robot 

 
Figure 58: Topological map with robot self navigation 

 

Figure 57 was created by controlling the robot. Although we were controlling the robot, 

the landmark detection was done by neural network 4 and the topological map creation 

was done automatically. 

On Figure 58, we let the robot navigate to create the same topological map. The robot 

failed to find some of the rooms. The main reason for that is because of the size of the 

entrance to the rooms. The robot exploration path detection work, but when the robot 

actually turned to use the discovered path, it was perfectly aligned with the actual 

entrance of the room and dismissed that path as unusable. A new training set of the neural 
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network and an improvement of the navigation algorithm would be needed to correctly 

map the entire map. 
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CHAPTER 8  
_______________________________________ 
 
          Conclusions and Future Work 
 
This thesis describes a method for creating a topological map online using a neural 

network for landmark detection. The idea is to have a meaningful relation between the 

nodes of the topological map and the environment. Using a neural network gives us the 

flexibility to choose what should be used as landmark. The results illustrate the potential 

of our concept on a real robot for a topological map creation. 

 

We designed and programmed the simulation for the robot considering what is realistic to 

expect at all times. Although we showed that this approach works in simulation, some 

extra work is needed to transfer our approach to a real robot. 

Our program simulates multiple lasers to compute the range data. This would be 

expensive to implement. Using only one laser with a rotating mirror solves the problem 

of the price but makes the scanning time much higher. Sonars are a low cost alternative to 

laser range finder but some pre-computation would be needed to cleanup the range data 

for the neural network. A robot has limited computational power and limited memory. 

Some optimization of the code for landmark detection and topological map creation 

should be done if running on a robotic hardware. Still, we believe that transferring our 

approach to a real robot would be fairly straight forward. 

In order to train the neural network for a real robot, an initialization of the network 

weight based on training in simulation would be appropriate since thousands of iterations 

are necessary to train the neural network. Further training could be done on the real robot 

after each run through the real environment by providing locations where a landmark is 

desired. 

 

An extensive empirical comparison between our approach and other approaches such as 

Kuiper & Byun [14] should be done next in order to estimate the efficiency of our current 
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approach. We have discussed the conceptual similarities and differences in the thesis but, 

running an implementation of their approach on the same set of maps would provide a 

better comparison. It would be especially important to compare in terms of efficiency. 

Our simulated robot performs a simple tracking position which is a form of localization. 

We could extend this to a better tracking position algorithm and initial localization. Initial 

localization is important when a robot is put back in a known environment at an unknown 

location. This happens every time a robot is turned off and turned back on. It is not 

efficient if the robot has to rediscover an environment every time it is turned back on. 

There exist numerous algorithms for initial localization that could be applied for our 

purpose. 

Some maps that have larger intersections will have multiple landmarks at those 

intersections; it may be advantageous to merge those multiple landmarks into one node in 

the topological map. This could easily be done if the robot checks that there are no 

obstacles between nodes that are close by and forming a loop. Then those nodes could be 

merged into one node. This would make a map that is more readable for both humans and 

robot. 

This simulation does not take into consideration a dynamic environment. With this 

algorithm, the robot would not build a correct topological map when there are obstacles 

in motion. In order to map a dynamic environment, the robot needs to know how to deal 

with a changing environment for navigation and it needs to have a flexible topological 

map creation and modification. 
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Appendix A 
________________________________________________________________________ 
 
 

 
Figure 59 : Training Maps 
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Figure 60 : On Training “Testing Maps” 
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Figure 61 : Testing Maps 
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Map 1 Map 2 Map 3 Map 4 Map 5 Map 6 Map 7 Map 8

NN1 6.31E-02 3.13E-02 2.07E-02 0.1349 8.38E-02 8.91E-02 8.54E-03 2.10E-02

NN2 3.44E-02 3.83E-02 9.11E-02 0.1211 8.95E-02 6.38E-02 7.65E-02 4.10E-02

NN3 4.78E-02 2.66E-02 3.99E-02 7.37E-02 5.59E-02 6.18E-02 7.34E-03 5.76E-02

NN4 2.18E-02 3.24E-02 1.86E-02 8.86E-02 8.54E-02 4.79E-02 1.02E-02 3.31E-02

NN5 7.46E-02 8.64E-02 3.73E-02 8.54E-02 7.82E-02 7.79E-02 9.86E-03 4.02E-02

NN6 6.53E-02 5.72E-02 3.28E-02 9.00E-02 8.66E-02 8.27E-02 9.41E-03 3.94E-02

NN7 2.82E-02 2.37E-02 2.29E-02 0.1176 6.33E-02 5.92E-02 1.11E-02 3.88E-02

NN8 7.68E-02 5.18E-02 5.75E-02 0.1057 5.30E-02 6.33E-02 1.48E-02 6.02E-02

NN9 0.1017 4.05E-02 0.1396 9.11E-02 0.1259 7.97E-02 7.95E-02 0.101

NN10 8.56E-02 6.45E-02 5.55E-02 0.1246 8.30E-02 4.79E-02 1.08E-02 3.78E-02

Map 9 Map 10 Map 11 Map 12 Map 13 Map 14 Map15 Map 16 Map17

NN1 7.11E-02 4.36E-02 1.05E-02 4.45E-02 3.28E-02 3.54E-02 4.65E-02 0.1365 6.30E-02

NN2 3.71E-02 3.34E-02 3.08E-02 6.46E-02 3.81E-02 2.03E-02 6.15E-02 0.1532 6.19E-02

NN3 3.64E-02 3.94E-02 1.33E-02 5.33E-02 2.58E-02 3.25E-02 4.34E-02 6.91E-02 7.61E-02

NN4 8.41E-02 4.03E-02 2.34E-02 5.90E-02 2.01E-02 3.91E-02 1.33E-02 0.1388 5.84E-02

NN5 4.60E-02 4.75E-02 1.99E-02 4.98E-02 0.1075 4.10E-02 9.12E-02 0.1488 5.29E-02

NN6 0.1146 4.49E-02 1.52E-02 5.62E-02 5.05E-02 4.26E-02 3.57E-02 0.1385 8.28E-02

NN7 0.1063 3.52E-02 0.104 6.81E-02 3.05E-02 2.82E-02 2.82E-02 0.1334 3.60E-02

NN8 7.21E-02 4.71E-02 2.35E-02 4.32E-02 5.97E-02 3.07E-02 6.34E-02 0.191 7.09E-02

NN9 7.60E-02 3.29E-02 3.04E-02 6.56E-02 5.11E-02 2.82E-02 7.55E-02 0.216 5.70E-02

NN10 8.23E-02 6.94E-02 4.28E-02 7.94E-02 3.48E-02 5.92E-02 4.68E-02 0.156 5.31E-02

Table 2 : Mean Squared Error per Maps & per Neural Network Data 
 
 
Epochs 0 200 400 600 800 1000

MSE NN1 7.72E-02 2.86E-02 1.52E-02 1.03E-02 7.96E-03 6.68E-03

MSE NN2 7.14E-02 2.69E-02 1.42E-02 9.81E-03 7.88E-03 6.69E-03

MSE NN3 8.81E-02 3.46E-02 1.60E-02 1.02E-02 7.64E-03 6.28E-03

MSE NN4 7.36E-02 2.23E-02 1.11E-02 8.06E-03 6.60E-03 5.74E-03

MSE NN5 7.91E-02 2.63E-02 1.34E-02 9.09E-03 7.09E-03 6.03E-03

MSE NN6 7.56E-02 2.82E-02 1.45E-02 9.59E-03 7.48E-03 6.28E-03

MSE NN7 7.45E-02 2.62E-02 1.51E-02 1.02E-02 7.88E-03 6.56E-03

MSE NN8 7.74E-02 2.81E-02 1.50E-02 1.08E-02 8.73E-03 7.46E-03

MSE NN9 6.97E-02 2.76E-02 1.66E-02 1.25E-02 8.44E-03 6.70E-03

MSE NN10 7.43E-02 2.61E-02 1.31E-02 8.95E-03 6.82E-03 5.85E-03

Epochs 1200 1400 1600 1800

MSE NN1 5.80E-03 5.30E-03 4.84E-03 4.52E-03

MSE NN2 5.94E-03 5.39E-03 4.98E-03 4.61E-03

MSE NN3 5.41E-03 4.85E-03 4.42E-03 4.13E-03

MSE NN4 5.09E-03 4.64E-03 4.33E-03 4.04E-03

MSE NN5 5.31E-03 4.79E-03 4.37E-03 4.12E-03

MSE NN6 5.55E-03 5.01E-03 4.62E-03 4.10E-03

MSE NN7 5.70E-03 5.08E-03 4.61E-03 4.20E-03

MSE NN8 6.65E-03 6.04E-03 5.49E-03 5.00E-03

MSE NN9 5.86E-03 5.23E-03 4.75E-03 4.40E-03

MSE NN10 4.64E-03 4.27E-03 3.97E-03 3.71E-03  
Table 3 : Evolution of the Mean Squared Error Over Time during Training Data 
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Figure 62 : Program Organization 
 

World 
Manager 

Map 

AiRobot 

Display to Screen 

Main 
Program 

Calls Functions from … 



 

89 

 
Figure 63 Flowchart of the Robot Update function 
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Table 4 : Comparing all Neural Networks on Two Different Maps 
 
 


