An Application to Neural Network

By Philippe Kunzle

Instructor: Kenneth Oberhoff

Advisor: Andre de Korvin

Committee member: Jeong-Mi Yoon, Ali Berrached

3Introduction

4Background

43D Engine

5OpenGL API

5C++ & Object Oriented

6Object Oriented Hierarchy

9Other Tools

9Neural Network

9Basic Neural network

10Back Propagation

12Details of the project

12Camera motion

13Hovercraft motion

14Hovercraft’s “vision”

16Neural Networks

17NN Training

20Possible Improvement and Ideas

20Improving Vision

21Searching instead of wondering

21One more dimension

21Training on the fly

22Improving Neural Networks

24Conclusion

26Appendix

26A) Real time vs. pre rendered animation

26B) CD Content

Introduction

Neural networks are often used to have a computer imitate quick intelligent response. Because the concept comes from the basic functioning of the brain, it makes it possible to have the computer learn action depending on stimulus and desired response.
Undergraduate classes in neural network teach students how to create a neural network but not so much as how to apply it in a real world context. A senior project is a good opportunity to apply a neural network in a more complex environment. I first thought of having a neural network control a robot. But that involves more electronics than computer programming. So instead, I created a virtual world where two hovercrafts must find and follow each other. One of the hovercrafts is controlled by an artificial intelligence; the other is controlled through the keyboard by a human. This obviously involves creating a neural network to control the hovercraft, but also a 3D engine to display the entire virtual world.
In a first part, I will go over the main tools I used or created in this senior project. I will then go into the details of the project. I will finish with ideas of possible improvement I could implement in the program.
Background

In order to accomplish this project, I add to choose tools I would need to use and tools I would need to build. Since the project is a 3D application program, I had to choose a programming language and an application program interface to draw to the screen. I will go over the tools used and created in this first chapter which are the 3D engine in the first part and the neural network in a second part.
3D
 Engine

Real time 3D graphics needs to be efficient to have a smooth animation. Any animation, whether it is a movie, a cartoon, or a computer application, displays a certain amount of images every second, called frame per second (FPS). Every image will be a little bit different from the previous image which makes the human eye believe that an object is actually moving. This is possible because the human eye keeps each image for a couple of fraction of seconds. Movies have 24 FPS; television has 30 FPS (searchnetworking.com). As we are writing a real time 3D animation, we need to have enough FPS so that the animation seems believable. Every computation for artificial intelligence and display the next image need to take less than 0.033 second to be able to reach 30 FPS. Therefore, the 3D engine must be as efficient as possible to leave enough processor time to the artificial intelligence to be processed.
A 3D Engine must be able to add 3D object
 to the world being displayed. This usually means loading 3D objects data from a file. It then organizes each object in data structure and displays the objects that are in front of the camera. Objects and cameras can be moved as needed in order to create an interactive animation. It is mostly used in computer games, but and real time 3D animation will mostly work the same. Pre-rendered animation work very differently, read the appendix A on real time vs. pre-rendered animation.
I built this 3D engine using C++ as computer language and OpenGL API to draw to the screen. I build a hierarchy of C++ objects that loads, organizes, displays, cull objects and detects when a collision occurs. Some function of this 3D engine is also used to get information into the neural network.
OpenGL API

There are mainly two options to display 3D graphics onto a windows platform, DirectX and OpenGL. Both will provide the same basic functionality

I chose OpenGL because it is simpler to use. The learning curve is much steeper with OpenGL than with DirectX.

OpenGL was developed by Silicon Graphics, Inc. (Wright, 29) to easily display real time 3D graphics in a program. It provides a set of functions that can be called from a program (Wright, 29). Also OpenGL will take advantage of any hardware acceleration that might be available on the computer running the program (Wright, 39).
Projection & Rasterization
 is done behind the scene:
A 3D virtual world is made of many 3D objects drawn onto the screen. Each of these object are made of triangles in 3D space and projected onto the screen which is 2D
. OpenGL API has a set of functions that let the programmer display points, lines or triangles that have 3D coordinate and display them onto the screen. It does the projection from 3D to 2D of all triangles behind the scene for us (Wright, 141).
To make objects look even more real, we can apply an image on each face of an object. OpenGL also provides a set of function for that purpose.

Scene modification

Any virtual world cannot seem real unless objects and cameras can move otherwise we just have a static image. Therefore, some functions in OpenGL are used to make transformations such as rotation, translation or scaling objects or changing the position of the camera (Wright, 136). OpenGL has optimized those functions to make it as fast as possible.
Flexible
OpenGL was not developed only for the windows platform therefore it is very portable. A program written using OpenGL API can be recompiled with only minor changes to work on another platform. Also, OpenGL can be used in many different languages. The most common is C++, but one can also use this API in Delphi, Java, Python, and many other languages.
C++ & Object Oriented

To write a program I had to choose from all languages that can be found for Windows platform. I was already familiar with C++ language, so it made most sense to me to use it for this project. C++ is an object oriented language which makes a large project much easier to maintain.
OOP languages
Programs written in a structured program language such as C become very quickly complex, buggy and hard to maintain. This is especially true for large program having thousands of lines of code.
Object Oriented Programming (OOP) was originally developed to have huge programs more maintainable and more reusable.

In OOP, the data and functions are together in a class. Each class is supposed to be self sufficient and therefore can be compared to objects that one uses. Every function in a class should only modify data of its class. Once classes are programmed, I can just use the instantiated object as I would use an object in the real world without worrying about how it works.
History of C++
C++ is not a true OOP because it is backwards compatible with C. It is a hybrid language between Structured and Object Oriented programming.

C became a popular language very quickly in the 1980’s (Ritchie). But programs written in C could rarely be reused, and updating one function could break the code in many other parts of the program.

Because the syntax of C++ is basically the same as C, it made it very easy for C programmers to migrate towards C++. It is the most popular language and many other languages based their syntax off C++ to create a new language which is the case of Java.
Perfect for 3D engine

Since a 3D engine is supposed to manage 3D objects in a virtual world, using OOP make perfect sense. Each “3D object” can be a class that is instantiated as an object. Because each object is suppose to take care of its own data, each object representing a 3D object can take care of loading itself from a file, and display itself when needed. It makes it very easy to divide and conquer.
Object Oriented Hierarchy

The 3D engine has two main classes. GL3DObject is a basic 3D Object, which is derived into many different other objects such as cameras (GL3DCamera), lights (GL3DLight), and different other kind of object. GL3DScene is the class that holds all the objects in the world. It has the HAS_A relationship with GL3DObject.

The other classes are used to manage the data structure such as GL3DQTree which is a quad tree of indices of objects (Deloura, 444) and GL3DLList which is a linked list of objects. (Standish, 38)

[image: image1]
3D object

Any 3D object in games or in virtual reality is all made of triangles. Objects that are made for movies such as the dinosaurs in Jurassic Park may have millions of triangles. On a personal computer equipped with the latest video card, objects will have up to 5000 triangles for complex object. Because every object are drawn every single frame up to 60 times per second, we cannot have object that are too complex. It would make the game drop frame rate. That is why games don’t look as good as computer graphic made for movies.
Each triangle of an object is made out of points called vertices. If the object is lit, each vertex needs to have a normal associated to it that is used to compute penumbra and highlight. If an image is applied on the object (as a decal), each triangles needs to have three texture coordinate associated to it.
Because there is so much data to keep track of, the creation of an object is usually done by some program such as 3DStudio Max or Lightwave.
The GL3DObject class and inherited classes have 2 main functions: Load and Show. The “Load” function reads an object from a “3ob” file. It stores the vertices, normals and texture coordinate in arrays, or asks OpenGL to compile it into a display list. That is the main difference between GL3DVAObject (Vertex Array), GL3DIVAObject (Indexed Vertex Array) and GL3DDLObject (Display List).
It also loads any images that might need to be displayed onto the object.

Once loaded, the 3D Object is ready to be shown.
The “Show” function takes the data from the object, places and rotates the object and calls the appropriate OpenGL function to display it onto the screen.

“3ob” file format was specifically created for this 3D engine. I could have used some other standard 3D file format such as 3DS or ASE, but 3DS file format is very hard to understand since it is all binary data and ASE is too slow to read because it is text format. Therefore, it was better to create a new file format that would be binary.
Scene
GL3DScene keeps track of every light, object and camera in the virtual world; therefore, it has to organize this data in an efficient way.

There could be thousands of objects in a virtual world, but not every single object is in front of the camera at the same time. In fact, most of the time, very few of these objects are in the field of view of the camera (also called frustum).

If we send all the objects to be drawn, OpenGL will have to check every single object and display only the objects that are actually being shown at the time. It waste a lot of computer power to do this. So we organize the objects in a quad tree in order to easily find which object should be shown. This way, we get to control efficiently which object should be shown and which should not. Removing objects that are not in the field of view is called culling.
I use a quad tree to organize 3D objects. A quad tree is a four branches tree. Each node below the current node splits the space covered in four.
[image: image2.png]

With a recursive function very similar to a binary search tree, we can efficiently find which objects in the world are in front of the camera.
Since all object are organized depending on their position in space (x,z), we check every node of the tree to see if the boundary of the node is completely, partially or not at all, within the field of view. Then, we add every object that is with those nodes to a linked list that we display those objects to the screen
This way, we don’t have to check every single object position and boundary, but we check the boundary of the node that encloses the objects.

At every level of the tree, we can remove up to ¾ of the entire world, we then come down to the object we need.

The quad tree can also be used for collision detection (Deloura, 444). In the same manner we search for objects that should be displayed, we can search for object that are around each hovercraft. With a few if statement, we can find out if any objects are around the hovercraft and stop it if it collided with some virtual building.

Because culling is not required for lights or camera, I stored them in a linked list. Lights are setup when the program originally loads, and a pointer points to the current camera.
Other Tools

Often, a programmer will have to spend time on tools that will not be in the main program but those tools make it possible to finish the main program in time (Deloura, 7).

In this project, I had to create a tool called ASE2Scene which translates an ASE file (created by 3DS MAX) into SCN and 3OB file (GL3D Engine file format)

The whole scene in the program was created in 3DStudio Max and saved as an ASE file. The ASE file is then translated into a SCN files and as many 3OB files as needed (One per object). Creating every object by hand would have taken many weeks and would not have looked nearly as good as they do.
Neural Network

Basic Neural network
The Neural Network Artificial Intelligence comes from how brains work. Our brain is composed of 1011 neuron cells (Hagen, 1-8) that sends electrical signal to each other. Each neuron is composed of one or two axon which works as an output and many dendrites which work as input of electrical signals. Neurons need certain strength of signal input that adds up from all the dendrites to be triggered. Once triggered, the neuron will fire and send an electrical signal down its axon to other neurons. Connections (axon and dendrites) will strengthen if they are often used.
This principle is applied to neural network as a smaller scale. Today’s computer don’t have the power of computing what 20 billions neurons do, but even by having a few neurons, we are able to have intelligent response from a neural network.
Neurons are organized in layers. The Input layer will have entries, and depending on the strength of connection to each neuron in the next layer, the input signal is sent to the next layer. The strength of the connection is called a weight. The value of each neuron in each layer will depend on the weight of the connection and the values of the neurons of the previous layer. A neural network can have many layers but we have to keep in mind that each neuron we add to a neural network will add computation to be made each time we use the network and therefore will slow down the process.
The most basic neural network is called perceptron which is described by:

[image: image3.wmf](

)

b

p

W

hardlms

a

+

´

=

a: output vector
W: weight matrix
p: input vector

b: bias
hardlms: hardlimits is a transfer function. The output n = Wp+b of the weight multiplication goes through a function which give our output a.

Hardlimits is the transfer function usually used for perceptron defined by:

[image: image4.wmf]0

0

<

Û

=

n

a

[image: image5.wmf]0

1

³

Û

=

n

a

(Hagen, 2-6)
There exist nine common transfer functions. The one I will be using in this project is called Log-Sigmoid defined by:

[image: image6.wmf]n

n

n

n

e

e

e

e

a

-

-

+

-

=

(Hagen, 2-6)
Back Propagation

When a neural network has just a couple of neurons, we can compute what the weight should be to get the desired response. But as we increase the number of neurons we use, we also increase the complexity to compute what the weight should be. Back propagation network lets us train the neural network which sets the weights for us. We just need to provide the desired outputs with the corresponding inputs.
For a back propagation network of n layers, we have

[image: image7.wmf](

)

1

1

1

1

+

+

+

+

+

´

=

m

m

m

m

m

b

a

W

f

a

where m is the layer number (m=0,1,…,M-1). Note that a0=p which is the input of the neural network and aM (M number of layers) is the final output.

Each layer can have a different transfer function to accomplish what is needed.

The training of such a network in order to update the weights (approximate steepest descent) is:

[image: image8.wmf]m

m

m

T

m

m

m

m

s

k

b

k

b

a

s

k

W

k

W

a

a

-

=

+

-

=

+

-

)

(

)

1

(

)

(

)

(

)

1

(

1

(m = M-1,…,2,1)
is the learning rate

W is the weight matrix

b is the bias
s is the sensitivity:

[image: image9.wmf]1

1

)

)(

(

+

+

·

=

m

T

m

m

m

s

W

n

F

s

(Hagen, 11-25)

Once the neural network is trained for some input values, it approximates the output for any in between inputs that we give it.
For example, if we were to approximate the function
[image: image10.wmf]÷

ø

ö

ç

è

æ

+

=

p

i

p

g

4

sin

1

)

(

p

 for -2<p<2, a back propagation neural network with 1 neuron input layer, 1 neuron output layer and 3 neurons in the middle layer (1-3-1 network) will approximate the function g without any problem for i=1, i=2, i=4, but the 1-3-1 network gives up if i is larger than 4 (Hagen 11-18). For i = 6, we need a 1-5-1 network to do the job (Hagen 11-19).
But the neural network can approximate anything that could be represented by a vector of any dimension. Although it doesn’t make any sense to use a neural network to approximate a simple function where the input and output is one-dimensional, it make a lot of sense to approximate a function that has a multi dimensional input and output even if we don’t know the equation of the function.
All we need to know is the input and output for some points.
Since this project is about applying a neural network in a program, I used a neural network program written by Joey Rogers who wrote the book Object-Oriented Neural Networks in C++. It made more sense to use what already exists rather than create my own.
This neural network is highly object oriented, which makes it very flexible and fairly easy to use.
Details of the project
Now that I described all the tools I am using in this project, I can describe the parts that are specific to the project. A 3D engine and neural network can be used for many purposes, but the code that ties everything together is what makes to project work.

The motion of object such as the hovercrafts involves basic physics equation. But the most challenging was the “vision” of the hovercraft. The main goal was to have the hovercraft “see” what is in front of it, but only what was in front of it.

More functionality had to be built to plug the neural network to the 3D engine and to move objects. I will describe the camera and hovercrafts motion, neural network’s input and training.
Camera motion

The camera follows the hovercraft, but I didn’t want a fixed camera relative to the hovercraft. I was aiming for a loosely connected camera to the hovercraft. If the hovercraft accelerates, the camera takes some time to catch it back as if the camera was controlled by someone that had to react to what the hovercraft does.

A fixed camera would be easy to do. The camera is at a constant distance from the hovercraft and the angle of the camera is the same as the one of the hovercraft. But a loosely connected camera is a little harder to accomplish.
The angle of the camera is getting closer to the hovercraft every frame so that it takes some time to have both the camera and the hovercraft pointing in the same direction.

[image: image11.wmf](

)

a

k

t

´

-

=

D

D

b

a

a

Camera Angle
Hovercraft Angle

ka: Constant

t: time
ka is a constant that controls the speed at which the camera turns.

[image: image12.wmf](

)

(

)

(

)

x

x

x

x

k

Cam

d

Craft

t

Cam

´

-

´

+

=

D

D

a

sin

[image: image13.wmf](

)

(

)

(

)

z

z

z

z

k

Cam

d

Craft

t

Cam

´

-

´

+

=

D

D

a

cos

d : Constant

kx : Constant
kz : Constant

Camx: Camera’s x position

Camz: Camera’s z position

Craftx: Hovercraft’s x position

Craftz: Hovercraft’s z position

d is how far behind the craft we want the camera to be when at rest.

kx and kz are usually the same value and they are constants that controls the speed at which the camera moves on the x and y axis.
Hovercraft motion

The hovercrafts have two inputs, the power of acceleration or break and the angle of turn. Those values are used to compute position and angle of the hovercraft on the next frame.

The equations are based on mechanics. They take into account a basic air resistance model so that the hovercraft would eventually slow down if no acceleration is applied to it.

We need to first computer the velocity relative to the hovercraft’s direction from the current throttle. Note that the variable throttle can be negative which would mean “braking”.

[image: image14.wmf]T

a

´

=

2

1

a: acceleration

T: Throttle

[image: image15.wmf](

)

t

RV

f

a

RV

RV

z

front

z

z

´

´

-

+

=

[image: image16.wmf](

)

(

)

t

RV

f

v

k

RV

RV

x

side

z

x

´

´

-

´

´

=

b

sin

RVz: Relative velocity to the craft in the z axis (forward)

RVx: Relative velocity to the craft in the x axis (sideways)

t : time

ffront: Front air resistance

fside: Side air resistance
v: Craft’s Angular velocity
k : Constant = 0.5
We then need to find out the absolute hovercraft’s velocity of the craft, that is, the velocity in the coordinate system of the virtual world:

[image: image17.wmf](

)

(

)

x

z

x

RV

RV

CraftV

´

+

´

=

b

b

cos

sin

[image: image18.wmf](

)

(

)

x

z

z

RV

RV

CraftV

´

+

´

=

b

b

sin

cos

CraftVx: Craft’s absolute velocity in the x axis
CraftVz: Craft’s absolute velocity in the z axis

Hovercraft Angle

The absolute velocity is used to compute the next position of the hovercraft.

[image: image19.wmf]t

v

´

+

=

b

b

b

[image: image20.wmf]t

CraftV

Craft

Craft

x

x

x

´

+

=

[image: image21.wmf]t

CraftV

Craft

Craft

z

z

z

´

+

=

t is the time elapsed since last frame.

Hovercraft’s “vision”
The goal is to simulate what a human would see and send it to the neural network. We could send the position of every obstacle in the virtual world to the neural network but that creates 2 problems. First of all, it is a lot of information that the neural network as to manage, which means more neurons and therefore more time to compute the decision the neural network takes. Then, it is not realistic. A human only sees what is in front of him, so giving all the information to a neural network wouldn’t make it close to what a human sees.
The relevant information is the position of obstacle or target hovercraft relative to the AI hovercraft and its distance. The target hovercraft is the hovercraft control by a human. It is the target for the AI controlled hovercraft. From now on, “the hovercraft” will be the hovercraft controlled by AI and the target will be the human controlled hovercraft.
I am handling the vision of obstacle and target differently. In order to see obstacles, the vision sent to a neural network is an array of 3 floating points. Each floating points is the distance from the obstacle to the hovercraft. The first, second and third floating point of the array represents the distance from the closest object on the left hand side, center, and right had side respectively.
To accomplish this, the program creates a linked list of all objects in front of the hovercraft within a certain distance using the quad tree. It then computes the equations of 2 lines parallel to the hovercraft’s heading. One line is to the left of the hovercraft, the other one is to the right of it. Finally, it checks each object to find out if they are to the left, right, or in front of the Hovercraft. The distance from the closest object is recorded in the right part of the array.

[image: image22.png]Vision: Array of floating points

//compute the position of the center of the circle

pos[0] = - radius * sin(DEGTORAD(Craft->AngularP[1])) + Craft->Position[0];

pos[1] = - radius * cos(DEGTORAD(Craft->AngularP[1])) + Craft->Position[2];

//parse tree to get the linked list of object

ObjViewed = Scene->m_pTree->ParseQTree(radius , pos);

//organize object to prepare for the neural network entries

//compute the 2 line's equations ax+by+c = 0

a = -sin(DEGTORAD(Craft->AngularP[1]-90));

b = -cos(DEGTORAD(Craft->AngularP[1]-90));

px = distfromLines * a + Craft->Position[0];

pz = distfromLines * b + Craft->Position[2];

c1 = -a * px - b * pz;

px = -distfromLines * a + Craft->Position[0];

pz = -distfromLines * b + Craft->Position[2];

c2 = -a * px - b * pz;
To follow a target, we send to a neural network the angle relative of the target from the hovercraft’s position and the distance from to hovercraft to the target. In order to have the hovercraft guess where the target is going, I first had a 3rd variable that was the position where the target was in the previous frame. But the reaction of the hovercraft wasn’t what I expected. So I now have the direction in which the target is going as 2rd variable and the distance from the target to the AI controlled hovercraft as the 3rd variable.
[image: image23.png]

Neural Networks

The control of the hovercraft depends on whether the target is in front of the hovercraft or not. If the target is in front and there is no obstacle in between the target and the hovercraft, a neural network (NN2) will try to follow the target. If there is any obstacle that should be avoided, another neural network (NN1) will avoid collision. By default, if there is no obstacle, the AI controlled hovercraft will go straight.

The AI controlled hovercraft will be able to avoid obstacle no matter what obstacle configuration you give it. The hovercraft could very well evolve in a randomly generated world as long as the buildings are sparse enough.
If the buildings were too close, the vision of the hovercraft could not detect the space between the buildings because the vision only has 3 sections: right, left and center.
NN Training
As I already mentioned, there are two neural networks. The first one is used to avoid buildings and the other is used to follow the target.

Each neural network is trained to respond as desired. The training consists of giving the neural network different input associated with the correct output for this situation. The neural network runs though the training with this data until the difference of the neural network response and the given output is small enough.

When a situation occurs that is different than what it was trained for the neural network will “guess” what the appropriate response should be.

All inputs and outputs are between 1.0 and 0.0. The output neurons are the same for both neural networks since they both control the hovercraft.
The value for maximum acceleration is 1.0, 0.5 means “do nothing” and deceleration (or braking) is 0.0. The value for turning 0.5 means “go straight ahead”, turn right is 1.0 and turn left is 0.0. The neural network can have a response in between those values which enables the hovercraft to accelerate a little bit or turn a little to the right or left.

The inputs are very different for the 2 neural networks. The values from the vision described in the earlier are modified so that they are between 0.0 and 1.0. 0.0 means that the distance between the hovercraft and the obstacle is null, and 1.0 means that there is no obstacle in the field of view of the hovercraft.
 1st Neural Network Training

	Input Neurons
	Output Neurons

	Left
	Center
	Right
	Acceleration
	Turn

	1.0
	1.0
	1.0
	1.0
	0.5

	0.5
	1.0
	1.0
	0.6
	0.7

	1.0
	1.0
	0.5
	0.6
	0.3

	1.0
	0.5
	1.0
	0.3
	0.4

	0.5
	1.0
	0.5
	0.7
	0.5

	0.0
	0.0
	0.0
	0.2
	0.2

	0.5
	0.5
	0.5
	0.5
	0.4

	0.0
	1.0
	1.0
	0.4
	0.9

	1.0
	1.0
	0.0
	0.4
	0.1

	1.0
	0.0
	1.0
	0.2
	0.2

	0.0
	1.0
	0.0
	1.0
	0.5

	0.0
	0.0
	1.0
	0.3
	0.8

	1.0
	0.0
	0.0
	0.3
	0.2

	0.3
	0.4
	0.1
	0.5
	0.3

	0.1
	0.4
	0.3
	0.5
	0.7

	0.0
	0.1
	0.2
	0.3
	0.9

	0.2
	0.1
	0.0
	0.3
	0.1

	0.0
	0.3
	0.6
	0.5
	0.8

	0.6
	0.3
	0.0
	0.5
	0.2

	0.2
	0.3
	0.4
	0.5
	0.9

	0.4
	0.3
	0.2
	0.4
	0.1

2nd Neural Network Training
	Input Neurons
	Output Neurons

	Alpha
	Beta
	L
	Acceleration
	Turn

	0.5
	0.0
	0.1
	0.4
	0.5

	0.5
	0.25
	0.1
	0.4
	1.0

	0.5
	0.5
	0.1
	0.0
	0.5

	0.5
	0.75
	0.1
	0.4
	0.0

	0.5
	1.0
	0.1
	0.4
	0.5

	0.9
	0.0
	0.1
	0.4
	0.7

	0.9
	0.25
	0.1
	0.4
	1.0

	0.9
	0.5
	0.1
	0.4
	1.0

	0.9
	0.75
	0.1
	0.3
	0.5

	0.9
	1.0
	0.1
	0.4
	0.7

	0.1
	0.0
	0.1
	0.4
	0.3

	0.1
	0.25
	0.1
	0.3
	0.5

	0.1
	0.5
	0.1
	0.4
	0.0

	0.1
	0.75
	0.1
	0.4
	0.0

	0.1
	1.0
	0.1
	0.4
	0.3

	0.5
	0.0
	0.9
	1.0
	0.5

	0.5
	0.25
	0.9
	1.0
	0.7

	0.5
	0.5
	0.9
	0.5
	0.5

	0.5
	0.75
	0.9
	1.0
	0.3

	0.5
	1.0
	0.9
	1.0
	0.5

	0.9
	0.0
	0.9
	1.0
	0.6

	0.9
	0.25
	0.9
	1.0
	0.7

	0.9
	0.5
	0.9
	0.5
	0.55

	0.9
	0.75
	0.9
	1.0
	0.5

	0.9
	1.0
	0.9
	1.0
	0.6

	0.1
	0.0
	0.9
	1.0
	0.4

	0.1
	0.25
	0.9
	1.0
	0.5

	0.1
	0.5
	0.9
	0.5
	0.45

	0.1
	0.75
	0.9
	1.0
	0.3

	0.1
	1.0
	0.9
	1.0
	0.4

The training is the most important part to accomplish the current results. Without a carefully chosen data to train the network, the hovercraft could very well do nothing or respond randomly.
Very small changes in the data used to train the hovercraft can make dramatic changes in the response of the neural network that will lead the hovercraft to get immobilized because the response stabilizes to 0.5 acceleration and 0.5 turn.
Possible Improvement and Ideas

Because of the time limit on this project (1 semester), there are many improvement that could be made. Some of these would only take a month to implement; other could be years of research.
Improving Vision
As it is right now, the AI controlled hovercraft “sees” what is on the left, center or right. There is only 3 degrees of vision. An obstacle is either to the right or to the center, but there is nothing like: “a little bit to the right” It works for obstacle that are far apart, but when 2 buildings are close together, the AI will not see that there is space in between buildings.

In the example below, the hovercraft will probably turn around because the vision will not pick up that there is enough space for the hovercraft to go through.

[image: image24.png]

By increasing the number of floating points used to see, we add the number of degrees the AI can see. Using 5, 7, or even better, 9 floating points, the AI would be able to see how much to the right or to the left an object is.
The down side of this is the complexity of training the neural network goes up and the time to compute the response each frame goes up as well.

With more inputs, we probably would have to increase the number of neurons in the middle layers or we might even have to add layers. As we add layers and neurons, the time to compute a response grows exponentially.
Searching instead of wondering

The AI controlled hovercraft wonders around until it sees the target hovercraft, and as soon as it looses it, it has no memory of where it lost the target and starts wondering again. The rule is, go forward as long as you can and turn to avoid building if needed until the target hovercraft is seen.

I could definitely improve that by adding some kind of memory or concept of orientation. The AI could try to reach the point where the target was last seen and then go in the direction where the target was going.

The memory could be a position vector and direction vector of the target hovercraft when the AI lost the visual, then a neural network trained for this purpose could find that point and go in the direction of the direction vector once it get there. Or we could use associative memory neural network with decay as input to the neural network that controls the hovercraft.
One more dimension

Even though the world is done in 3 dimensions, all motions, collision detections, vision is 2 dimensional. But I can very easily conceive using the same technology in a 3 dimensional world controlling an aircraft rather than a hovercraft that cannot take off. This would require modifying the 3D engine, vision and neural network.

The 3D engine is currently checking collision detection in 2 dimensions only, which is fine for anything that drives like a car. Adding a dimension would require to have an octree data structure (Deloura, 439) of the objects rather than a quad tree. Each node of the tree would have a pointer to left, right, up, down like in a quad tree, but it would also have a above and under pointer.
The vision would need to have at least 9 inputs. We still need to have the 3 floats we currently have: distance from the closes obstacle on the right, left, and center, but then we would also need those 3 values for obstacles that would be above, and below in the field of view.

Finally, the neural network would need at least 9 inputs and 3 or 4 outputs. The 9 inputs would be the vision and the output would still be throttle and turn (rudder) but then we need to control the pitch (up/down) and bank (z axis rotation).
The training of this network would need more than 15 instances. Probably at least 40 specific instances is needed to learn how to react in 3 dimensions.
Training on the fly
This is one improvement I wanted to do for this project, but I unfortunately ran out of time. In this project, the AI is trained before hand and then the neural network data is plugged into the game and used to control the hovercraft. There is no improvement of how the AI controls the hovercraft as it plays the game. The AI would seem really intelligent if it could learn from its mistake and improve its “driving” as it plays. To accomplish this, we could add a neural network that would train the neural network that controls the hovercraft.

[image: image25]
By using a neural network to train another, we can modify on the fly, as the hovercraft is running, the neural network that is controlling the hovercraft. The AI would then improve itself as it plays.
Improving Neural Networks

I was hoping to find the time to modify the neural network to make it even closer to how biological neurons work. Since I was unable to accomplish it, I add this idea in this chapter as a possible improvement I could make to the project.
Biological neurons have one property that is not taken into account in computer neural network. Each neuron has a physical position in the brain and the electric signal takes a certain time to go from a neuron to another. The electric signal will take a certain amount of time to reach another neuron and the further the neuron is, the longer it will take.
In a computer neural network, it is assumed that every neuron of a layer is at the same distance from the neurons of the previous layer. Therefore, the response of each neuron in each layer is computed at the same time.

Let’s study a very simple case to show the different this could make

[image: image26]
In the example above, each circle represents a neuron and the arrows represent the connection between neurons. The signal follows the direction of the arrows Let’s study the following case:

Output Neuron 4 needs to reach 0.5 to be triggered, the middle neurons 2 and 3 need 0.3 to be triggered, and once triggered, each neuron sends a signal of 0.3.

In a conventional neural network, the first neuron triggers both middle neurons 2 and 3 at the same time and the addition of the signal of the two middle layer neurons reaches 0.6 which is above the threshold of .5. The output neuron 4 is triggered.

If we take the distance of neurons and speed of signal, we have the following result: both middle layer neurons 2 and 3 are triggered, but not at the same time. The signal of neuron 2 will reach neuron 4 before the signal coming from neuron 3. No signals reaches 0.5 and the output neuron 4 is never triggered.
If we change the threshold of neuron 4 to 0.3, we still get a different result.

The output neuron is triggered twice.
The modified neural network is obviously harder to train because there is more parameter. Finding an efficient way of training such a network would require more research.
The improvement this would bring to the neural network is not obvious in this project, but I think it would be interesting to see the difference in behaviors this would bring. A neural network where time is a parameter could probably react very differently and maybe even closer to how our brain works.

Conclusion

This project covers two different areas: 3D virtual world and artificial intelligence.
Even though, the 3D engine was only a mean to develop the artificial intelligence and show a neural network in action, it is half the project. The artificial intelligence could be improved in many ways, but it does what I was aiming for: it avoids buildings and follows the target hovercraft if it sees it.
This project shows one manner to apply neural network to control a vehicle.
A similar technique could be used in a real world situation, or in a virtual world. The knowledge acquired in this project gives a better idea on how to use a neural network in a more complex environment which is closer to the real world problems I could encounter in a job.

Reference
Object-Oriented Neural Networks in C++, Joey Rogers, Academic Press, Inc 1997.
Neural Network Design, Martin Hagan, Howard Demuth, Mark Beale, PWS Publishing Company, 1995.

Game Programming Gems, Mark Deloura, Charles River Media, Inc 2000

OpenGL Superbible 2nd edition, Richard Write jr, Michael Sweet, Waite Group Press, 2000

Data Structures, Algorithms & Software Principles in C, Thomas Standish, Addison-Wesley Publishing Company, Inc. 1995

Dennis M. Ritchie, http://cm.bell-labs.com/cm/cs/who/dmr/chist.html, Lucent Technologies Inc, 1996
www.searchnetworking.com, http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213531,00.html

Appendix

A) Real time vs. pre rendered animation

The difference between real time animation and pre rendered animation is not difficult to grasp but it is important to understand the quality difference that exists.

In any 3D animation, the objects such as the dinosaur in Jurassic Park or the hovercraft in this senior project are created using a 3D Object modeler such as 3DStudio Max.
In a pre rendered animation, the objects are also animated in the modeler and then each frame of the movie is rendered and saved. Those frames are then put together with the taped background in the case of Jurassic Park. Each frame can take hours to create and many computers.

In a real time animation, every single frame has to be created just before being displayed. Therefore, to get a good animation with 30 FPS, the computer needs to render every object on the frame in 0.33 seconds.

Because of this restriction, the quality of the objects, which is determined by the number of vertices and the quality of the texture, has to be lower than on pre rendered animations.

This is the reason we can reach in “Final Fantasy, the movie” a computer animation that looks close to a real movie but we cannot reach this quality on a real time rendered animation since we are limited by the computational power of today’s computer.

Although, it is very likely that within a couple of years, we will start having movie quality real time animation on our computer since the technology is progressing so fast.

B) CD Content

[image: image27]
Presentation: Power Point presentation and notes for presentation.

Compiled Demo: 4 precompiled demos.
Paper: digital copy in Word XP format of this paper.

VC++ Code: The original code for this project for Visual C++ 6.0.

[image: image28]
Alone: AI controlled hovercraft alone.
City: Two hovercrafts in a city looking scene.

Empty: Two hovercrafts in an empty scene.

Maze: Two hovercrafts in a maze.

(Double click on “game.exe”)

[image: image29]
3Dengine: The main program that runs the 3d engine.
ASE2Scene: Create .scn and .3ob from .ase file format.
Training NN1: Program to train neural network 1 (avoid obstacle control)
Training NN2: Program to train neural network 2 (follow target control)
Scene Data: Different scene data that can be dragged and dropped in the 3dengine folder to compile the program with different environments.
GL3DCamera

GL3DVAObject

GL3DLight

GL3DObject

Middle Layer

4

Input Layer

Output Layer

1

2

3

State of the game: Vision

Training Neural Network

Controlling Neural Network

Training

Controlling hovercraft modifies the vision

Vision data

Vision data

CD

Presentation

Compiled Demo

Paper

VC++ Code

Maze

Empty

City

Alone

Compiled Demo

Training NN2

Training NN1

ASE2Scene

3DEngine

VC++ Code

Scene Data

� 3 dimensional

� A 3 dimensional object (3D Object) is composed of points that forms triangles, the normal of each triangle, and texture coordinate if needed.

� Application Program Interface

� Applying two-dimensional arrays of colors (bitmaps)

� 2 dimensional

� In this section, I assume that the reader has basic knowledge of OOP

_1080825070.unknown

_1080826545.unknown

_1081866601.unknown

_1081866823.unknown

_1081867556.unknown

_1080826583.unknown

_1080827991.unknown

_1080826130.unknown

_1080826349.unknown

_1080825462.unknown

_1080825553.unknown

_1080825404.unknown

_1080823673.unknown

_1080824378.unknown

_1080824912.unknown

_1080824025.unknown

_1080823357.unknown

_1080823416.unknown

_1080822887.unknown

